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Abstract
Objective  The primary objective of this study was to investigate the risk factors for diabetic peripheral neuropathy 
(DPN) and to establish an early diagnostic prediction model for its onset, based on clinical data and biochemical 
indices.

Methods  Retrospective data were collected from 1,446 diabetic patients at the First Affiliated Hospital of Anhui 
University of Chinese Medicine and were split into training and internal validation sets in a 7:3 ratio. Additionally, 360 
diabetic patients from the Second Affiliated Hospital were used as an external validation cohort. Feature selection 
was conducted within the training set, where univariate logistic regression identified variables with a p-value < 0.05, 
followed by backward elimination to construct the logistic regression model. Concurrently, the random forest 
algorithm was applied to the training set to identify the top 10 most important features, with hyperparameter 
optimization performed via grid search combined with cross-validation. Model performance was evaluated using 
ROC curves, decision curve analysis, and calibration curves. Model fit was assessed using the Hosmer-Lemeshow test, 
followed by Brier Score evaluation for the random forest model. Ten-fold cross-validation was employed for further 
validation, and SHAP analysis was conducted to enhance model interpretability.

Results  A nomogram model was developed using logistic regression with key features: limb numbness, limb pain, 
diabetic retinopathy, diabetic kidney disease, urinary protein, diastolic blood pressure, white blood cell count, HbA1c, 
and high-density lipoprotein cholesterol. The model achieved AUCs of 0.91, 0.88, and 0.88 for the training, validation, 
and test sets, respectively, with a mean AUC of 0.902 across 10-fold cross-validation. Hosmer-Lemeshow test results 
showed p-values of 0.595, 0.418, and 0.126 for the training, validation, and test sets, respectively. The random forest 
model demonstrated AUCs of 0.95, 0.88, and 0.88 for the training, validation, and test sets, respectively, with a mean 
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Introduction
The prevalence of diabetes mellitus and its associated 
complications is rising rapidly worldwide [1]. Diabetic 
peripheral neuropathy (DPN) is a common complica-
tion, and is primarily characterized by neuropathic pain 
and acral paresthesia, with more advanced cases exhibit-
ing motor neuron involvement and a potential need for 
amputation [2, 3]. Affected patients often experience 
dysfunctional nerve conduction that can contribute to 
diabetic foot ulcers [4]. Early stages of DPN can often 
undetected, with up to 50% of cases being asymptomatic 
[5]. By the time symptoms such as pain and numbness 
arise in the affected limb, the associated nerve may have 
already sustained irreversible damage. Sensory testing 
and comprehensive clinical scores used to diagnose DPN 
are highly dependent on subjective patient responses 
such that instances of small nerve fiber involvement may 
be overlooked [6], complicating the early diagnosis of this 
condition. Current treatments for DPN primarily focus 
on pain relief, glycemic control, and restoring metabolic 
homeostasis; however, these approaches frequently result 
in suboptimal outcomes [7]. There is thus a clear need 
to define novel approaches to preventing DPN or diag-
nosing it in its early stages in order to lower associated 
rates of disability and mortality, contributing to better 
patient quality of life. Nomograms are effective, easy-
to-use tools that integrate a range of risk factors while 
enabling the personalized calculation of a given individ-
ual’s risk of a particular condition in light of their clinical 
status. Sample collection for this study was carried out 
across two medical centers, enhancing the diversity of 
the sample set and thereby bolstering the generalizabil-
ity of the model. Based on the data from 1806 diabetic 
patients, this research explores the etiological factors of 
DPN and establishes a nomogram for individualized risk 
prediction.

Materials and methods
Study population
From January 2018 to June 2022, the medical records of 
1500 diabetic patients from the First Affiliated Hospital 
of Anhui University of Chinese Medicine were retro-
spectively reviewed, and concurrently, the records of 400 
diabetic patients were collated from the Second Affili-
ated Hospital of Anhui University of Chinese Medicine. 
Patients aged 18 years or older with type 1 or type 2 

diabetes mellitus were eligible for inclusion. Those with 
gestational diabetes, acute infectious diseases, severe 
conditions such as heart failure, severe liver or kidney 
disease, malignant tumors, or missing baseline data were 
excluded. Upon patient admission, the clinical diagnosis 
of DPN was made by physicians in accordance with the 
2016 Chinese Medicine Clinical Diagnosis and Treat-
ment Guidelines for DPN [8]. The Michigan Diabetic 
Neuropathy Score (MDNS) [9] and Toronto Clinical 
Scoring System (TCSS) [10] were used for scoring, and 
grading was performed according to the patient’s score.

Data collection and preprocessing
In this study, all case data were double-entered by two 
researchers and subsequently reviewed by a third per-
son, ensuring strict adherence to Good Clinical Practice 
(GCP) guidelines throughout the entire process. Col-
lected patient data included age, gender, height, weight, 
BMI [weight (kg)/height2(m2)], systolic blood pressure 
(SBP), diastolic blood pressure (DBP), history of drink-
ing, history of smoking, family history of diabetes, dura-
tion of diabetes, limb pain and limb numbness. Evaluated 
comorbid conditions included diabetic retinopathy (DR), 
Diabetic kidney disease (DKD), hyperlipidemia and 
hypertension. Laboratory test results included mea-
sures of fasting blood glucose (FBG), hemoglobin A1c 
(HbA1c), triglycerides (TG), total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-C), low-density 
lipoprotein cholesterol (LDL-C), hemoglobin (HGB), 
platelets (PLT), red blood cells (RBC), white blood cells 
(WBC), urine glucose (UGLU), urine protein (UPRO), 
urine red blood cells (URBC), urine white blood cells 
(UWBC), blood urea nitrogen (BUN), aspartate amino-
transferase (AST) and alanine aminotransferase (ALT).

Statistical analyses
Statistical analyses were conducted using Python (ver-
sion 3.12) and R studio (version 4.2.3). In the training set, 
logistic regression variables were selected using back-
ward elimination with a 0.05 p-value threshold, ensuring 
model parsimony and preventing overfitting by retain-
ing only statistically significant predictors [11]. Simulta-
neously, the random forest algorithm identified the top 
ten factors based on importance scores, offering a non-
linear and interaction-aware complement to the linear 
logistic regression analysis. The RF algorithm’s ensemble 

AUC of 0.886 across 10-fold cross-validation. The Brier score indicates a good calibration level, with values of 0.104, 
0.143, and 0.142 for the training, validation, and test sets, respectively.

Conclusion  The developed nomogram exhibits promise as an effective tool for the diagnosis of diabetic peripheral 
neuropathy in clinical settings.

Keywords  Diabetic peripheral neuropathy, Nomogram model, Risk factors, Predictive model
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approach, which constructs a multitude of decision trees 
and aggregates their results, provides a robust mecha-
nism against overfitting, making it suitable for both inter-
nal and external validation datasets [12]. The predictive 
performance of the selected factors was evaluated using 
statistical analyses, including receiver operating char-
acteristic (ROC) curves, decision curve analysis (DCA), 
and clinical calibration curves. These analyses aimed to 
assess the true-positive rate against the false-positive 
rate and the concordance between predicted probabili-
ties and observed outcomes. Ten-fold cross-validation 
was employed to evaluate the model’s generalization on 
the training set. Calculate the Hosmer-Lemeshow test to 
validate the model’s goodness-of-fit. The Brier score was 
computed to evaluate the overall accuracy of probabilistic 
predictions made by the random forest model, reflecting 
the degree of calibration between predicted probabilities 
and actual outcomes.

SHAP (Shapley Additive Explanations) methods are 
used to interpret machine learning model predictions by 

determining each feature’s contribution to the final pre-
diction [13]. Shapley values, derived from cooperative 
game theory, measure feature importance by averaging a 
feature’s marginal contributions across all possible com-
binations of features [14]. After validating the predic-
tive value and clinical relevance of the features, factors 
identified through backward elimination were selected 
to construct the nomogram. A nomogram, by represent-
ing intricate mathematical relationships and facilitating 
the estimation of dependent variables via multiple inde-
pendent variables, functions as a visual tool in statistics, 
providing an intuitive interface that converts multivari-
ate regression models into interpretable charts, thereby 
bridging the gap between sophisticated statistical analy-
sis and practical application in fields such as medicine 
and risk assessment [15]. The above process is detailed in 
the flowchart (Fig. 1).

Fig. 1  Development and validation flowchart for diabetic neuropathy prediction models. Flowchart of feature selection and nomogram building
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Results
Comprehensive analysis of baseline data and key feature 
selection
Data from 1806 cases were finally included in this study 
for analysis. The data from 1,446 patients at the First 
Affiliated Hospital of Anhui University of Traditional 
Chinese Medicine were split into a training set (n = 1,012) 
and an internal validation set (n = 434) in a 7:3 ratio, with 
data from 360 patients at the Second Affiliated Hospital 
used as the external validation set. Categorical variables 
were described using frequencies and percentages, while 
continuous variables were summarized as mean ± stan-
dard deviation for normally distributed data, and as 
medians with interquartile ranges for non-normally dis-
tributed data (Table  1). Comparison of baseline data 
between DPN patients and non-DPN patients (Table 2). 
Univariate logistic regression analysis (Table  3) identi-
fied several factors significantly associated with DPN 
(p < 0.05). These factors included sex, limb numbness, 
limb pain, diabetic retinopathy, diabetic kidney disease, 
urinary glucose levels, urinary protein levels, age, diabe-
tes duration, diastolic blood pressure, hemoglobin, white 
blood cell count, urinary white blood cell count, HbA1c, 
and low-density lipoprotein cholesterol.

The factors selected by the logistic regression model 
through backward elimination include limb numb-
ness, limb pain, DR, DKD, URPO, DBP, WBC, HbA1c, 
and HDL-C; the factors identified by the random forest 
model based on feature importance include limb numb-
ness, limb pain, WBC, CREA, diabetes duration, PLT, 
HbA1c, TG, UWBC, and FPG.

Development and validation of LR and RF models
Receiver Operating Characteristic curves were plotted 
to assess model discrimination. The logistic regression 
model showed an AUC of 0.91 (95% CI: 0.89–0.92) on the 
training set, 0.88 (95% CI: 0.85–0.91) on the validation 
set, and 0.88 (95% CI: 0.85–0.92) on the test set (Fig. 2A). 
The random forest model demonstrated an AUC of 0.95 
(95% CI: 0.94–0.96) on the training set, 0.88 (95% CI: 
0.85–0.91) on the validation set, and 0.88 (95% CI: 0.84–
0.91) on the test set (Fig.  2B). Decision Curve Analysis 
was conducted to evaluate clinical usefulness, with both 
models showing consistent net benefit across varying 
threshold probabilities (Fig.  3). Calibration curves dem-
onstrated the alignment between predicted and observed 
probabilities for both models, with the logistic regression 
model showing better calibration across all sets, while the 
random forest model showed some deviation, particu-
larly on the training set (Fig. 4). The Hosmer-Lemeshow 
test results indicated that the logistic regression model 
had p-values of 0.595 for the training set, 0.418 for the 
validation set, and 0.126 for the test set. The Brier scores 
for the random forest model were 0.104 for the training 

set, 0.143 for the validation set, and 0.142 for the test set, 
indicating reasonable calibration. During 10-fold cross-
validation, the logistic regression model achieved a mean 
AUC of 0.902, while the random forest model had a mean 
AUC of 0.886.

SHAP analysis: evaluating feature impact and predictive 
contributions
The SHAP summary plots for both models illustrate the 
contributions of features to the predictions. In Fig.  5A, 
the logistic regression model shows the linear impact of 
features, with limb numbness and limb pain as notable 
contributors. In contrast, Fig.  5B presents the random 
forest model’ s SHAP summary plot, which captures the 
non-linear interactions among features. Unlike the logis-
tic regression model, the random forest model under-
scores the role of variables such as creatinine, diabetes 
duration, and urinary white blood cell count, reflecting 
the model’ s ability to account for complex, non-linear 
relationships within the data. The color gradient from red 
to blue indicates feature values, with higher values corre-
sponding to a greater influence on the prediction of dia-
betic peripheral neuropathy. The SHAP bar plots further 
distinguish the models by ranking features based on their 
mean impact on the model’ s output. SHAP bar plots for 
both the logistic regression and random forest models, 
ranking features by their mean impact on the model’s 
predictions (Fig. 6).

Nomogram for predictive modeling of DPN
Based on model evaluation and SHAP analysis, the ran-
dom forest model exhibited slightly lower generalization 
ability compared to the logistic regression model and 
showed a tendency towards underfitting. Therefore, the 
factors selected by the logistic regression model were 
used to construct the nomogram (Fig.  7). The nomo-
gram visually represents the contributions of various 
clinical factors to the risk of developing DPN. Key pre-
dictors include limb numbness, limb pain, DR, DKD, 
URPO, DBP, WBC, HbA1c, and HDL-C. Each factor is 
assigned a point value based on its presence or sever-
ity, and the total score is calculated by summing these 
points. This total score corresponds to the diagnostic 
probability of DPN, providing clinicians with a tool to 
estimate a patient’ s risk and support personalized clini-
cal decision-making.

Discussion
To address the limitations in medical resource avail-
ability, a nomogram model was herein developed to 
predict the risk of DPN in patients with diabetes based 
on limb numbness, limb pain, DR, DKD, URPO, DBP, 
WBC, HbA1c, and HDL-C. Employing a 10  g mono-
filament examination approach [16] and corresponding 



Page 5 of 14Wang et al. BMC Endocrine Disorders          (2024) 24:196 

Table 1  Comparison of baseline characteristics between training and validation sets
Characteristics All subjects(n = 1806) Training set(n = 1012) Validation set(n = 434) External validation set(n = 360)
Sex Female 1062(58.80%) 617(60.97%) 240(55.30%) 205(56.94%)

Male 744(41.20%) 395(39.03%) 194(44.70%) 155(43.06%)
Limb numbness Yes 812(44.96%) 452(44.66%) 199(45.85%) 161(44.72%)

No 994(55.04%) 560(55.34%) 235(54.15%) 199(55.28%)
Limb pain Yes 1356(75.08%) 764(75.49%) 319(73.50%) 273(75.83%)

No 450(24.92%) 248(24.51%) 115(26.50%) 87(24.17%)
History of smoking Yes 1246(68.99%) 677(66.90%) 313(72.12%) 256(71.11%)

No 560(31.01%) 335(33.10%) 121(27.88%) 104(28.89%)
History of drinking Yes 1319(73.03%) 714(70.55%) 332(76.50%) 273(75.83%)

No 487(26.97%) 298(29.45%) 102(23.50%) 87(24.17%)
Family history of diabetes Yes 1334(73.86%) 723(71.44%) 332(76.50%) 279(77.50%)

No 472(26.14%) 289(28.56%) 102(23.50%) 81(22.50%)
DPN Yes 944(52.27%) 533(52.67%) 224(51.61%) 187(51.94%)

No 862(47.73%) 479(47.33%) 210(48.39%) 173(48.06%)
DR Yes 1445(80.01%) 821(81.13%) 342(78.80%) 282(78.33%)

No 361(19.99%) 191(18.87%) 92(21.20%) 78(21.67%)
DKD Yes 1586(87.82%) 890(87.94%) 385(88.71%) 311(86.39%)

No 220(12.18%) 122(12.06%) 49(11.29%) 49(13.61%)
Hypertension Yes 851(47.12%) 481(47.53%) 205(47.24%) 165(45.83%)

No 955(52.88%) 531(52.47%) 229(52.76%) 195(54.17%)
Hyperlipidemia Yes 1031(57.09%) 580(57.31%) 248(57.14%) 203(56.39%)

No 775(42.91%) 432(42.69%) 186(42.86%) 157(43.61%)
UGLU Negtive 1059(58.64%) 592(58.50%) 260(59.91%) 207(57.50%)

1+ 102(5.65%) 62(6.13%) 27(6.22%) 13(3.61%)
2+ 92(5.09%) 55(5.43%) 18(4.15%) 19(5.28%)
3+ 386(21.37%) 211(20.85%) 85(19.59%) 90(25.00%)
4+ 167(9.25%) 92(9.09%) 44(10.14%) 31(8.61%)

URPO Negtive 1647(91.20%) 924(91.30%) 398(91.71%) 325(90.28%)
Weakly
positive

41(2.27%) 18(1.78%) 9(2.07%) 14(3.89%)

1+ 48(2.66%) 31(3.06%) 11(2.53%) 6(1.67%)
2+ 41(2.27%) 20(1.98%) 12(2.76%) 9(2.50%)
3+ 29(1.61%) 19(1.88%) 4(0.92%) 6(1.67%)

Age 58.00 (67.00, 51.00) 58.00 (67.00, 50.00) 59.00 (68.00, 52.00) 59.00 (69.00, 52.00)
Duration of Diabetes 7.00 (13.00, 2.00) 7.00 (13.00, 2.00) 8.00 (14.00, 2.00) 7.00 (12.00, 2.00)
SBP 132.00 (144.00, 120.00) 132.00 (144.00, 120.00) 133.48 ± 16.22 131.50 (144.00, 120.00)
DBP 80.00 (88.00, 74.00) 80.00 (88.00, 75.00) 80.00 (89.75, 74.25) 80.00 (88.00, 74.00)
HGB 135.00 (148.00, 123.00) 136.00 (149.00, 124.00) 133.85 ± 18.89 135.00 (147.00, 122.00)
RBC 4.53 (4.95, 4.13) 4.56 (5.00, 4.14) 4.47 (4.89, 4.13) 4.49 (4.88, 4.06)
WBC 5.92 (7.09, 4.93) 5.91 (7.07, 4.94) 5.89 (7.07, 4.91) 5.98 (7.21, 4.92)
PLT 190.00 (233.00, 153.00) 187.00 (230.00, 152.00) 193.00 (230.75, 156.00) 196.00 (237.00, 154.00)
UWBC 4.60 (16.90, 1.90) 4.45 (17.45, 1.90) 4.20 (14.15, 1.80) 5.10 (18.32, 1.88)
URBC 4.90 (11.38, 2.50) 5.05 (11.30, 2.50) 4.50 (11.30, 2.10) 5.00 (11.40, 2.60)
FPG 7.39 (10.01, 5.91) 7.36 (9.93, 5.92) 7.46 (10.06, 5.94) 7.42 (10.18, 5.88)
HbA1c 7.80 (9.70, 6.68) 7.78 (9.51, 6.65) 7.87 (9.90, 6.70) 7.88 (9.62, 6.62)
TG 1.54 (2.30, 1.06) 1.52 (2.35, 1.06) 1.56 (2.25, 1.02) 1.58 (2.28, 1.05)
TC 4.52 (5.23, 3.83) 4.55 (5.29, 3.85) 4.47 (5.12, 3.81) 4.50 (5.15, 3.78)
LDL-C 2.69 (3.30, 2.11) 2.71 (3.31, 2.14) 2.70 (3.26, 2.09) 2.64 (3.39, 2.06)
HDL-C 1.13 (1.38, 0.94) 1.12 (1.39, 0.94) 1.17 (1.43, 0.95) 1.13 (1.34, 0.94)
CREA 61.35 (73.60, 51.00) 61.05 (74.33, 51.50) 61.95 (73.97, 50.20) 61.35 (72.53, 50.90)
BUN 5.74 (6.95, 4.80) 5.76 (6.95, 4.81) 5.77 (7.09, 4.82) 5.64 (6.78, 4.72)
ALT 19.00 (28.00, 13.83) 19.00 (29.00, 14.00) 18.00 (27.00, 13.00) 19.00 (26.25, 13.00)
AST 18.00 (23.00, 15.00) 18.00 (23.00, 15.00) 18.00 (22.08, 15.00) 18.00 (23.05, 15.00)
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Table 2  Comparison of baseline characteristics between patients with and without diabetic peripheral neuropathy
Characteristics non-DPN(n = 944) DPN(n = 862)
Sex Female 336 (35.59%) 408 (47.33%)

Male 608 (64.41%) 454 (52.67%)
Limb numbness Yes 241 (25.53%) 753 (87.35%)

No 703 (74.47%) 109 (12.65%)
Limb pain Yes 136 (14.41%) 314 (36.43%)

No 808 (85.59%) 548 (63.57%)
History of smoking Yes 313 (33.16%) 247 (28.65%)

No 631 (66.84%) 615 (71.35%)
History of drinking Yes 280 (29.66%) 207 (24.01%)

No 664 (70.34%) 655 (75.99%)
Family history of diabetes Yes 236 (25.00%) 236 (27.38%)

No 708 (75.00%) 626 (72.62%)
DR Yes 108 (11.44%) 253 (29.35%)

No 836 (88.56%) 609 (70.65%)
DKD Yes 77 (8.16%) 143 (16.59%)

No 867 (91.84%) 719 (83.41%)
Hypertension Yes 517 (54.77%) 438 (50.81%)

No 427 (45.23%) 424 (49.19%)
Hyperlipidemia Yes 408 (43.22%) 367 (42.58%)

No 536 (56.78%) 495 (57.42%)
UGLU Negtive 594 (62.92%) 465 (53.94%)

1+ 41 (4.34%) 61 (7.08%)
2+ 42 (4.45%) 50 (5.80%)
3+ 184 (19.49%) 202 (23.43%)
4+ 83 (8.79%) 84 (9.74%)

URPO Negtive 888 (94.07%) 759 (88.05%)
Weakly positive 16 (1.69%) 25 (2.90%)
1+ 14 (1.48%) 34 (3.94%)
2+ 18 (1.91%) 23 (2.67%)
3+ 8 (0.85%) 21 (2.44%)

Age 58.00 (49.00, 67.00) 59.00 (52.00, 67.00)
Duration of Diabetes 6.00 (2.00, 10.25) 10.00 (4.00, 14.00)
SBP 132.00 (120.00, 144.00) 132.00 (121.00, 144.00)
DBP 82.00 (75.00, 90.00) 80.00 (74.00, 88.00)
HGB 137.00 (126.00, 149.00) 133.00 (121.00, 146.00)
RBC 4.56 (4.19, 4.99) 4.48 (4.06, 4.91)
WBC 6.09 (5.07, 7.23) 5.74 (4.84, 6.95)
PLT 192.00 (156.00, 235.25) 188.00 (151.00, 229.00)
UWBC 4.10 (1.80, 13.72) 4.95 (1.90, 21.77)
URBC 4.70 (2.30, 10.50) 5.10 (2.60, 12.20)
FPG 7.29 (5.92, 9.91) 7.55 (5.88, 10.20)
HbA1c 7.60 (6.59, 9.48) 8.00 (6.80, 9.90)
TG 1.58 (1.09, 2.39) 1.50 (1.03, 2.25)
TC 4.54 (3.84, 5.24) 4.50 (3.82, 5.20)
LDL-C 2.76 (2.18, 3.41) 2.61 (2.02, 3.22)
HDL-C 1.11 (0.93, 1.34) 1.17 (0.95, 1.42)
CREA 62.80 (52.40, 74.60) 60.00 (49.02, 72.28)
BUN 5.63 (4.78, 6.84) 5.84 (4.82, 7.11)
ALT 20.00 (14.00, 30.00) 18.00 (13.00, 26.08)
AST 18.85 (15.00, 24.00) 17.70 (15.00, 22.00)
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clinical assessments can detect neuropathy in its more 
advanced stages [17], but some reports have found that 
nerve conduction velocity testing cannot effectively 
monitor lesions affecting smaller nerve fibers [18]. In 
contrast to traditional scoring strategies, the developed 
nomogram incorporates a wider range of predictive fac-
tors and can be applied more flexibly in clinical settings. 
The Nomogram’ s utility is grounded in its ability to inte-
grate diverse clinical variables into a unified predictive 
framework. This approach underscores the Nomogram’s 
potential to enhance prognostic evaluations and optimize 
patient-centered care in diabetes management.

The hyperglycemic-induced stress state is accompa-
nied by a crosstalk between metabolic, immune, genetic, 
and epigenetic factors. Metabolic syndrome leads to an 
insufficient uptake of glucose by peripheral nerves, and 
this bioenergetic imbalance, in turn, disrupts the cou-
pling between neurons and glial cells [7]. Reduced mito-
chondrial plasticity in peripheral nerves, along with DNA 
damage, triggers significant impediments in biosynthetic 

and metabolic functions. Under the high metabolic 
stress, the inadequacy of energy supply to distal axons 
diminishes neural conduction efficiency, impedes sen-
sory signal transmission, and ultimately leads to degen-
erative changes in nerve fibers and axonal death [19]. 
This study focused on the individualized assessment of 
risk in patients with diabetes, as all patients are at poten-
tial risk of DPN after developing hyperglycemia although 
their progression may vary [20]. Diabetes duration was 
positively correlated with the incidence of DPN in this 
analysis, consistent with prior evidence linking poor gly-
cemic control and diabetes duration to microvascular 
complications [21]. As the disease course grows longer, 
dysregulated glucose metabolism can adversely affect 
nerve fibers and compensatory functions can be dis-
rupted, leading to reductions in nerve cell numbers more 
extensive nerve damage, and an elevated DPN risk [22, 
23]. DPN is not solely a consequence of hyperglycemia; 
rather, it can emerge from a combination of cumulative 
and additive factors.

Table 3  Univariate logistic regression analysis of the training cohort
Characteristics β SE OR 95%CI Z P Value
Sex -0.367 0.129 0.690 0.54–0.89 -2.840 0.005
Limb numbness 3.207 0.178 24.700 17.43–34.99 18.041 < 0.001
Limb pain 1.239 0.157 3.450 2.54–4.69 7.906 < 0.001
History of smoking -0.118 0.134 0.890 0.68–1.16 -0.878 0.380
History of drinking -0.192 0.139 0.830 0.63–1.08 -1.387 0.165
Family history of diabetes -0.015 0.139 0.980 0.75–1.29 -0.110 0.912
DR 1.001 0.169 2.720 1.95–3.79 5.912 < 0.001
DKD 0.934 0.204 2.550 1.71–3.80 4.574 < 0.001
Hypertension -0.117 0.126 0.890 0.70–1.14 -0.924 0.355
Hyperlipidemia -0.170 0.127 0.840 0.66–1.08 -1.333 0.183
UGLU 0.091 0.042 1.090 1.01–1.19 2.163 0.031
URPO 0.210 0.086 1.230 1.04–1.46 2.434 0.015
Age 0.010 0.005 1.010 1.00-1.02 1.981 0.048
Duration of Diabetes 0.049 0.009 1.050 1.03–1.07 5.381 < 0.001
SBP 0.001 0.003 1.000 0.99–1.01 0.279 0.780
DBP -0.014 0.006 0.990 0.97-1.00 -2.496 0.013
HGB -0.011 0.003 0.990 0.98-1.00 -3.244 0.001
RBC -0.093 0.070 0.910 0.80–1.04 -1.334 0.182
WBC -0.119 0.035 0.890 0.83–0.95 -3.356 0.001
PLT -0.001 0.001 1.000 1.00–1.00 -1.132 0.258
UWBC 0.003 0.001 1.000 1.00–1.00 2.950 0.003
URBC 0.002 0.002 1.000 1.00-1.01 1.168 0.243
FPG 0.002 0.018 1.000 0.97–1.04 0.135 0.893
HbA1c 0.057 0.028 1.060 1.00-1.12 2.032 0.042
TG -0.006 0.023 0.990 0.95–1.04 -0.283 0.777
TC -0.001 0.052 1.000 0.90–1.11 -0.012 0.990
LDL-C -0.161 0.068 0.850 0.75–0.97 -2.359 0.018
HDL-C 0.144 0.127 1.150 0.90–1.48 1.130 0.258
CREA -0.001 0.001 1.000 1.00–1.00 -0.574 0.566
BUN 0.005 0.014 1.010 0.98–1.03 0.374 0.709
ALT -0.003 0.003 1.000 0.99-1.00 -1.190 0.234
AST -0.001 0.004 1.000 0.99–1.01 -0.243 0.808



Page 8 of 14Wang et al. BMC Endocrine Disorders          (2024) 24:196 

In this study, blood lipid levels were higher in early-
stage diabetes patients but declined as the disease pro-
gressed. Altered energy metabolism may underlie these 
changes, and dysregulated lipid signaling could play a 
role in the onset or progression of DPN. In the present 

study, higher levels of blood lipids were detected in early-
stage diabetes patients whereas these levels declined with 
the prolongation of the disease course. Altered energy 
metabolism may contribute to these differences in patho-
logical status in diabetes patients. Given the complexity of 

Fig. 2  ROC curves for logistic regression and random forest models. Figure 2A illustrates the ROC curves for the logistic regression model, highlighting its 
ability to distinguish between positive and negative cases across the training, validation, and test datasets, with AUC values and confidence intervals pro-
vided. Figure 2B shows the ROC curves for the random forest model, which, while performing strongly on the training set, suggests potential overfitting 
when compared to the validation and test sets. This comparison underscores the importance of evaluating model performance across different datasets 
to ensure generalizability and avoid overfitting
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the processes that link nerve damage to clinically detect-
able neuropathy, it is feasible that dysregulated lipid-
related signaling is involved in DPN onset or progression. 
The study indicates that reduced SBP and elevated LDL 
levels are significant risk factors for DPN, particularly 
among European patients, underscoring the crucial 
role of lipid profiles in its pathogenesis [24]. The more 

pronounced disruption of glycolipid metabolism evident 
in early-stage diabetes can irreversibly damage nerve 
cells through glycolipid toxicity. High lipid levels can 
induce Schwann cell apoptosis in experimental settings, 
particularly in the context of elevated glucose levels [25, 
26]. While the precise role of dyslipidemia in the patho-
genesis of DPN remains to be defined, lipid-lowering 

Fig. 3  Decision curve analysis for logistic regression and random forest. Figure 3A shows the DCA for the logistic regression model, evaluating net ben-
efits at various threshold probabilities. Figure 3B illustrates the DCA for the random forest model, where a notable rise in net benefit is observed at certain 
thresholds. This suggests that the random forest model may provide greater clinical value in specific decision-making scenarios
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therapy can support a better neuronal blood supply 
conducive to greater neuroprotective efficacy [27]. As 
diabetes becomes more advanced, however, affected 
patients can present with chronic wasting characterized 
by low levels of fat and persistent hyperglycemia. Insulin 
imbalances alter peripheral glucose metabolism while 

also more broadly adversely impacting energy metabo-
lism throughout the body. Both urinary glucose excre-
tion and insulin imbalances can prevent excessive tissue 
nutrient accumulation while also impacting myelinated 
nerve fiber repair [28, 29]. Patients with diabetes report-
edly exhibit impaired mitochondrial function [30], higher 

Fig. 4  Calibration curves for logistic regression and random forest. Figure 4A shows the calibration curves for the logistic regression model, depicting the 
alignment between predicted probabilities and observed outcomes in the training, validation, and test datasets, and evaluating the model’s calibration 
accuracy. Figure 4B presents the calibration curves for the random forest model, indicating how well the predicted probabilities correspond with actual 
results across the datasets, thereby assessing the model’s reliability
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levels of oxygen utilization, and enhanced lipid avail-
ability [23]. These findings suggest that the need for per-
sistent compensatory adjustments in diabetes patients 
ultimately leads to the onset of chronic wasting disease 
with concomitant shifts in lipid levels. Pathological meta-
bolic perturbations and gene reprogramming are often 
the key to DPN [31]. A number of studies have shown 
that Schwann cells play an important role in the synthesis 
of myelin sheath in peripheral nerves, and the metabolic 
coupling phenomenon between axons and Schwann cells 
can affect the occurrence and development of peripheral 
neuropathy.

The present analyses revealed that three forms of 
diabetic microangiopathy, including retinopathy, 

nephropathy, and neuropathy, were often comorbid 
with one another. This suggests that these microvascu-
lar conditions are associated with similar risk factors 
that can exacerbate their development or progression. 
Consistently, a prior cross-sectional analysis identified 
strong clustering among these three conditions such that 
they co-occurred more often than would be expected by 
chance [32]. Vascular endothelial cell damage can result 
from impaired microvascular circulation [33], and this 
process can contribute to nerve damage and associated 
declines in peripheral nerve function. Previous stud-
ies have not established a clear correlation between 
DPN and diabetic nephropathy [34], whereas DPN has 
been found to be more closely associated with diabetic 

Fig. 6  SHAP bar plots for logistic regression and random forest models. Figure 6A shows the SHAP bar plot for the logistic regression model, where limb 
numbness (+ 1.74) and limb pain (+ 0.67) have the highest linear impact. Figure 6B illustrates the SHAP bar plot for the random forest model, with limb 
numbness (+ 0.25), limb pain (+ 0.06), and diabetes duration (+ 0.03) contributing non-linearly. The plots indicate that the significance of each feature 
differs between the two models, highlighting the distinct ways in which these features influence their respective predictions

 

Fig. 5  SHAP summary plots for logistic regression and random forest models. Figure 5A demonstrates the impact of key features in a linear model, 
suggesting that certain symptoms like limb numbness and limb pain have a predictable, direct relationship with DPN risk. Figure 5B reveals the more 
complex, non-linear interactions present in the random forest model, where factors such as diabetes duration and creatinine levels influence risk in a 
multifaceted manner. These plots highlight the importance of considering both direct and complex clinical interactions when assessing DPN risk, sug-
gesting the need for an integrated approach to patient management that takes multiple aspects of health data into account
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retinopathy [20]. There remains ongoing scientific debate 
as to whether vascular insufficiency can trigger the inci-
dence of peripheral neuropathy directly or indirectly 
reduces the ability of nerve cells to tolerate damage such 
as that resulting from glucotoxicity [35]. Various overlap-
ping phenotypes contribute to disease development [36], 
potentially explaining significant interactions among 
these three distinct forms of microangiopathy. Limited 
testing methods and variations in timing limit efforts 
to detect microvascular interactions, but these findings 
nonetheless emphasize the importance of considering 
that these disease origins may be linked at earlier time 
points than otherwise noted.

This predictive model offers advantages over more 
invasive or exhaustive testing, as all of the included vari-
ables can be readily assessed, thereby lowering patient 
medical costs and discomfort. Some reports have sug-
gested that the underlying basis for peripheral neu-
ropathy can be discerned in ~ 73% of cases based on the 
results of laboratory tests, physical examination, and a 
medical history [37]. However, the study has certain limi-
tations. For instance, incorporating sensitivity analyses 
could enhance the model’s stability and reliability. More-
over, increasing the sample size and integrating data from 
a broader range of medical centers could improve the 
generalizability of the findings, thereby further validat-
ing and strengthening the model’s applicability. The lack 
of data on patients’ medication use is a limitation that 
could affect the interpretation of the results. Addressing 
these limitations in future research could provide a more 
comprehensive understanding of the factors influencing 
diabetic peripheral neuropathy.

Summary
In conclusion, the predictive nomogram established in 
this study can determine the odds of a given diabetic 
individual having DPN based on their physical condition 
and test results, thus offering a valuable tool for individu-
alized screening that can better guide the management of 
DPN in clinical practice.
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