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Abstract
Background Type 2 diabetes mellitus (T2DM) was one of the most prevalent comorbidities among patients 
with coronavirus disease 2019 (COVID-19). Interactions between different metabolic parameters contribute to the 
susceptibility to the virus; thereby, this study aimed to rank the importance of clinical and laboratory variables as risk 
factors for COVID-19 or as protective factors against it by applying machine learning methods.

Method This study is a retrospective cohort conducted at a single center, focusing on a population with T2DM. 
The patients attended the Yazd Diabetes Research Center in Yazd, Iran, from February 20, 2020, to October 21, 2020. 
Clinical and laboratory data were collected within three months before the onset of the COVID-19 pandemic in Iran. 
59 patients were infected with COVID-19, while 59 were not. The dataset was split into 70% training and 30% test sets. 
Principal Component Analysis (PCA) was applied to the data. The most important components were selected using a 
‘sequential feature selector’ and scored by a Linear Discriminant Analysis model. PCA loadings were then multiplied by 
the PCs’ scores to determine the importance of the original variables in contracting COVID-19.

Results HDL-C, followed by eGFR, showed a strong negative correlation with the risk of contracting the virus. 
Higher levels of HDL-C and eGFR offer protection against COVID-19 in the T2DM population. But, the ratio of BUN to 
creatinine did not show any correlation. Conversely, the AIP, TyG index and TG showed the most positive correlation 
with susceptibility to COVID-19 in such a way that higher levels of these factors increase the risk of contracting the 
virus. The positive correlation of diastolic BP, TyG-BMI index, MAP, BMI, weight, TC, FPG, HbA1C, Cr, systolic BP, BUN, and 
LDL-C with the risk of COVID-19 decreased, respectively.

Conclusion The atherogenic index of plasma, triglyceride glucose index, and triglyceride levels are the most 
significant risk factors for COVID-19 contracting in individuals with T2DM. Meanwhile, high-density lipoprotein 
cholesterol is the most protective factor.
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Introduction
The coronavirus disease 2019 (COVID-19) caused a pan-
demic and significant health challenges all around the 
world. Among the infected population, hypertension and 
type 2 diabetes Mellitus (T2DM) were the most prevalent 
comorbidities [1]. The hallmarks of T2DM are insulin 
resistance (IR) and decreased tissue response to insulin’s 
stimulation effect, leading to systemic inflammation, oxi-
dative stress, vascular dysfunction, and impaired immune 
system reactions [2, 3]. These characteristics predispose 
individuals with T2DM to infection [4].

Diabetic dyslipidemia, also known as atherogenic dys-
lipidemia, is a macrovascular complication [5] and is 
closely associated with insulin resistance in the T2DM 
population. The dyslipidemia includes elevated levels of 
triglycerides and reduced levels of high-density lipopro-
tein cholesterol [6], which develops a chronic inflamma-
tion and causes a sustained release of cytokines [7]. This 
metabolic disturbance has been reported as an inde-
pendent risk factor for adverse outcomes in COVID-19 
patients [8].

Diabetic kidney disease impacts approximately 40% of 
individuals with T2DM [9]. This microvascular compli-
cation induces uremia, which in turn disturbs innate and 
adaptive immune systems and increases susceptibility to 
infection [10]. The estimated glomerular filtration rate as 
a measure of kidney function has demonstrated a nega-
tive association with the severity of COVID-19 [11].

Machine learning-based models have been progres-
sively applied in the medical field to diagnose, treat, and 
evaluate the prognosis of various diseases, as well as to 
predict and score the risk of developing diseases [12]. 
Unlike conventional statistical methods, these algorithms 
can explore the complex relationships between different 
clinical variables and their interactions to achieve a good 
and accurate predictive performance [13].

Abnormalities of clinical and laboratory variables in 
individuals with T2DM make this population susceptible 
to contracting COVID-19. Most of the previous stud-
ies examined the association between vulnerability to 
COVID-19 and each of the clinical and laboratory fea-
tures in isolation without considering potential interac-
tions among the features. To address this gap, our study 
applies various machine learning algorithms to deter-
mine the relative importance of each feature’s role in 
susceptibility to the virus. This helps to manage diabetic 
patients effectively during future pandemics.

Materials and methods
Study design
This retrospective cohort study was conducted at the 
Yazd Diabetes Research Center in Yazd, Iran, utilizing 
data collected from patients who attended the center 
between February 20, 2020, and October 21, 2020. The 

Research Ethics Council of Shahid Sadoughi University 
of Medical Sciences approved the study in Yazd, Iran (IR.
SSU.REC.1401.097).

Patients and population
In this study,118 participants with T2DM aged between 
30 and 60 were recruited. Clinical data and labora-
tory measurements were extracted from their medical 
records. Individuals who attended irregular follow-up 
visits or had a history of immunodeficiency, neoplasia, 
co-infection, and smoking were excluded. In order to 
minimize diabetic complications, the study specifically 
targeted individuals with a duration of T2DM between 
3 and 7 years; therefore, none of the participants had 
macrovascular complications. Additionally, those with-
out medical records within three months before the pan-
demic onset in Iran were not considered.

The “COVID-19 positive” group included 59 patients 
who tested positive for COVID-19 using the polymerase 
chain reaction (PCR) technique from February 20 to May 
19, 2020, but were not hospitalized.

The “COVID-19 negative” group included 59 individu-
als with no documented history of COVID-19 infection 
before October 21, 2020. Gender and age matching were 
performed across the two groups.

Clinical variables and laboratory measures
Clinical data included age, gender, body mass index 
(BMI), and systolic and diastolic blood pressure. Blood 
samples obtained after 12 h of fasting and were analyzed 
for hemoglobin A1C (HbA1C), fasting plasma glucose 
(FPG), total cholesterol (TC), triglycerides (TG), high-
density lipoprotein cholesterol (HDL-C), low-density 
lipoprotein cholesterol (LDL-C), blood urea nitrogen 
(BUN), and creatinine (Cr). The estimated glomerular 
filtration rate (eGFR) was calculated using the CKD-EPI 
formula based on creatinine [14]. The triglyceride glucose 
(TyG) index, triglyceride glucose-body mass index (TyG-
BMI), and atherogenic index of plasma (AIP) were calcu-
lated using the following equations: [15, 16].

 

TyG Index = Ln (fasting glucose ( mg/dL)
× triglycerides (mg/dL)/2)

 TyG − BMI = BMI × TyG index

 
API = log

Triglycerides

HDL

Statistical analysis
Statistical analyses were performed using SPSS version 
27. The normality of data was evaluated using the Shap-
iro–Wilk test. Variables following a normal distribution 
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were presented as means ± standard deviation (SD), 
while non-normally distributed variables were reported 
as medians and interquartile ranges. Differences in vari-
ables between the two groups were analyzed using the 
Independent Samples T-test or the Mann–Whitney U 
test. A P-value below 0.05 was considered statistically 
significant.

Machine learning to predict susceptibility to COVID-19
Machine learning (ML) models were used to identify the 
importance of each variable in predicting susceptibility to 
COVID-19. The dataset was split into 70% training and 
30% test sets. All the computations were conducted using 
Python (version 3.11) and the scikit-learn library (version 

1.2.2). The analysis proceeded through the following 
steps:

Standardization
Each variable was standardized using the ‘Standard-
Scaler’ method to adjust them to have a mean of 0 and 
a standard deviation of 1 [17]. This procedure aimed to 
reduce biases resulting from differences in the measuring 
units.

Principal component analysis (PCA)
Due to high correlations among the original variables 
(Fig. 1), PCA was applied to transform the standardized 
variables into linearly uncorrelated components [18]. The 
number of principal components (PCs) was determined 

Fig. 1 A heatmap plot of the correlation between baseline variables
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by setting the n_components parameter to 0.95, ensuring 
that 95% of the original variance was retained.

Features selection
A ‘sequential feature selector’ was applied to find the 
most predictive PCs [19] using a receiver operating char-
acteristic (ROC) curve and area under the curve (AUC) 
as a scoring metric [20]. ROC-AUC was selected as the 
primary metric because it provides a comprehensive 
evaluation of model performance across all classifica-
tion thresholds, which is important for susceptibility 
predictions. ROC-AUC was calculated using a repeated 
stratified k-fold cross-validation method (five-fold and 
ten-repeat). To find the best selector for the ‘sequential 
feature selector,’ Six different machine learning models 
were trained on the training set, including Linear Dis-
criminant Analysis (LAD) [21], Logistic Regression (LR) 
[22], Support Vector Machine (SVM) [23], K-Nearest 
Neighbor (KNN) [24], Random Forest (RF) [25], eXtreme 
Gradient Boosting classifier (XGBoost classifier) [26]. 
Hyperparameter tuning of each model was performed 
with either ‘grid search cv’ or ‘randomize search cv’ to 
find the optimal parameters. The model with the highest 
ROC-AUC score on the test set was chosen as the selec-
tor. Feature selection was performed in both forward and 
backward directions, producing two sets of selected PCs.

Scoring selected PCs
Regression-based and tree-based models, including 
XGBoost, RF, Least Absolute Shrinkage and Selection 
Operator (LASSO) [27], LR and LDA were trained on 
the forward-selected and backward-selected PCs. Model 
evaluation on the test set was conducted using repeated 
stratified k-fold cross-validation (five-fold and ten-
repeat) to calculate ROC-AUC scores. The model with 
the highest scores across both sets of PCs was chosen, 
and the set yielding the higher score was used to assess 
PCs’ importance via the model’s ‘coef ’ attribute.

Translate PCA results back to the original features
PCA loadings were multiplied by the PCs’ importance 
as identified by the chosen model from the previous 
step. This helped to determine the most critical clinical 
and laboratory variables that contributed to the predic-
tion model and were strongly associated with COVID-19 
susceptibility.

Results
Baseline characteristics
Finally, 59 patients with type 2 diabetes in each group 
underwent analysis. Of these patients, 42 were female 
(71.2%) and 17 were male (28.8%). Weight (P = 0.024), 
BMI (P = 0.024), DBP (0.039), TG levels (P < 0.001), TC 
levels (P = 0.047), AIP (P < 0.001), TyG index (P < 0.001), 
and TyG-BMI index (P = 0.001) were all higher in the 
‘COVID-19 positive’ group due to statistical tests 
(Table 1).

Feature selection
The mean AUCs were calculated from six different 
machine-learning models in order to evaluate their per-
formance (Table 2). The LR model demonstrated the best 

Table 1 Baseline clinical and laboratory characteristics of 59 
patients in each group
Variables COVID-19 posi-

tive (n = 59)
COVID-19 
negative 
(n = 59)

P-value

Age (years old) 55 ± 8 56 ± 8 0.84
Female N = 42 (71.2%) N = 42 (71.2%) -
Male N = 17 (28.8%) N = 17 (28.8%) -
Weight a (kg) 81.8 ± 15 76.3 ± 10.2 0.024
BMI a (kg/m2) 28.9 ± 5.3 27 ± 3.6 0.024
Systolic BP (mmHg) 130 ± 20 130 ± 25 0.391
Diastolic BP (mmHg) 75 ± 10 70 ± 15 0.039
MAP a (mmHg) 93.4 ± 9.4 93.2 ± 9.2 0.502
FPG (mg/dL) 145 ± 61 145.4 ± 40 a 0.466
HbA1C a (%) 7.3 ± 1.4 7.2 ± 1.1 0.674
BUN (mg/dL) 13.534 ± 4.7 13.067 ± 6.5 0.842
Cr (mg/dL) 0.94 ± 0.32 0.91 ± 0.23 0.881
BUN/Cr 14.87 ± 4.88 a 15.75 ± 5.04 0.692
eGFR a (mL/min/1.73 
m2)

73.3 ± 16.1 74.4 ± 18.6 0.722

TG (mg/dL) 202 ± 85 139 ± 72 < 0.001
TC (mg/dL) 170.5 ± 40 150 ± 65 0.047
LDL-C (mg/dL) 86.19 ± 33.12 a 74 ± 38 0.429
HDL-C (mg/dL) 47 ± 11.79 48 ± 14 0.794
AIP 0.57 ± 0.18 a 0.45 ± 0.21 < 0.001
TyG index 4.14 ± 0.22 a 3.98 ± 0.29 < 0.001
TyG-BMI index a 119.73 ± 21.12 107.44 ± 19.12 0.001
Note Values were presented as median ± Interquartile Range or number and 
percentage. a Normal distributed values were presented as mean ± Standard 
deviation. Abbreviations: COVID-19, coronavirus disease 2019; BMI, body mass 
index; BP, blood pressure; MAP, mean arterial pressure; FPG, fasting plasma 
glucose; HbA1c, glycated hemoglobin; BUN, blood urea nitrogen; Cr, creatinine; 
eGFR, estimated glomerular filtration rate; TG, triglyceride; TC, total cholesterol; 
TyG, triglyceride-glucose index; TyG-BMI, Triglyceride glucose-body mass index

Table 2 The ROC-AUC score was obtained after applying repeated stratified k-fold cross-validation (five-fold and ten-repeat) on 
models
Score\Models SVC LDA KNN LR RF XGBoosting
ROC-AUC 0.575 0.681 0.630 0.715 0.57125 0.454
Abbreviations SVC, Support Vector Classifier; LDA, Linear Discriminant Analysis; KNN, K-Nearest Neighbor; LR, Logistic Regression; RF, Random Forest; XGBoosting, 
eXtreme Gradient Boosting
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performance, with a mean ROC-AUC of 0.715. There-
fore, the LR was used as a selector in the ‘sequential fea-
ture selector’ method. Four PCs with indices of 0,3,6,8 
were chosen from the primary nine PCs using a forward 
selection method. On the other hand, five PCs with indi-
ces of 0,3,5,6,8 were selected from the nine primary PCs 
using a backward selection method.

Scoring selected PCs
The performance of five regression-based and tree-based 
models on both sets of forward-selected and backward-
selected PCs was evaluated through the mean AUCs 
(Fig. 2). The best performance, with a mean ROC-AUC of 
0.714, was achieved when LDA was applied to the back-
ward-selected PCs.

Map PCA components back to original features
The ‘coef ’ attribute of the trained LDA model was used 
to obtain the importance of backward-selected PCs. 
The role of each variable in predicting susceptibility to 
COVID-19 was scored by multiplying the PCA loadings 
by the PCs’ importance.

HDL-C, followed by eGFR, showed a strong negative 
correlation with the risk of contracting the virus. Higher 

levels of HDL-C and eGFR offer protection against 
COVID-19 in the T2DM population. But, the ratio of 
BUN to creatinine did not show any correlation. Con-
versely, the AIP, TyG index and TG showed the most pos-
itive correlation with susceptibility to COVID-19 in such 
a way that higher levels of these factors increase the risk 
of contracting the virus. The positive correlation of dia-
stolic BP, TyG-BMI index, MAP, BMI, weight, TC, FPG, 
HbA1C, Cr, systolic BP, BUN, and LDL-C with the risk of 
COVID-19 decreased respectively (Fig. 3).

Discussion
In this study, we employed machine learning (ML) to 
identify the susceptibility to COVID-19 among the 
T2DM population based on clinical and laboratory vari-
ables. We obtained the best estimation performance 
when LDA was applied to backward-selected PCs, 
which contained five PCs out of the primary nine PCs. 
The model yielded a mean ROC-AUC of 0.714. Due to 
a small sample size, a ten-repeated stratified five-fold 
cross-validation approach was used to calculate the mean 
ROC-AUC. This mitigates potential overestimation or 
underestimation of the model’s predictive capacity.

Fig. 2 A bar plot compares models’ performance on forward-selected and backward-selected PCs to select the best model and the best set of PCs to 
predict COVID-19 susceptibility
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In the present study, HDL-C, followed by eGFR, was 
observed as a protective factor against COVID-19 infec-
tion in individuals with T2DM, While the AIP, TyG index 
and TG levels were the most significant risk factors for 
predicting susceptibility to COVID-19.

The findings obtained from the Mann- Whitney U test 
revealed that HDL-C and eGFR did not have statistically 
significant P-values between the ‘COVID-19 positive’ 
and ‘COVID-19 negative’ groups. Disparities in the out-
comes may be due to the different analytic approaches of 
ML models and statistical tests. ML models are designed 
to enhance prediction accuracy by several mechanisms; 
they identify the complex interactions between variables, 
conduct concurrent analyses of multiple variables, and 
are able to handle widely fluctuating data. Conversely, 
statistical tests have limitations in dealing with these 
attributes [28].

Low levels of HDL-C have been identified as a risk fac-
tor for different types of infection [29–31]. HDL-C, along 
with its most important component, apolipoprotein A-I 
(Apo A-I), contributed to the susceptibility to COVID-
19 [32–34]. An increase of 10  mg/dl in HDL-C or Apo 
A-I was able to reduce the risk of COVID-19 by 10% 
[34]. There are multiple mechanisms behind this link; 

for example, the receptor for HDL-C is called scavenger 
receptor protein B-I (SR B-I), which facilitated the entry 
of COVID-19 into cells that have angiotensin-converting 
enzyme 2 (ACE2) receptor [35]. Therefore, a higher con-
centration of HDL-C inhibited the virus’ entry through 
the SR B-I pathway [36]. Additionally, Apo A-I disturbed 
the viral entrance into body cells independently [37]. 
Studies employing a genetic approach have suggested 
that low levels of HDL-C may have a causal effect on 
developing the infection [38, 39]. Our result about the 
protective effect of HDL-C was consistent with these 
findings.

In this study, it was determined that eGFR was the 
second protective factor against COVID-19. This was 
consistent with the findings of previous observational 
studies [11, 40, 41]. Lim et al. [40] reported an inverse 
association between eGFR and the risk of COVID-19, 
even among patients experiencing mild to moderate kid-
ney dysfunction. Also, a study that used the Mendelian 
randomization analysis method found that kidney dys-
function causes increased susceptibility to contracting 
the virus [42]. However, we found the influence of eGFR 
on susceptibility to COVID-19 was almost comparable to 
that of BUN and approximately half of that of creatinine. 

Fig. 3 The variables ’importance was calculated by multiplying the PCA loadings by the PCs’ importance (the PCs’ importance was derived from the ‘coef’ 
attribute of the LDA model trained on backward-selected PCs)
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Unlike eGFR, both BUN and creatinine were identified 
as risk factors for contracting COVID-19 (Fig. 3). In fact, 
creatinine demonstrated a more pronounced effect than 
eGFR in this study, according to the PCA analysis, but 
relative to other variables acting as risk factors, creatinine 
was ranked as the least influential variable.

Reduced renal function was associated with impaired 
protein catabolism that, in turn, induces chronic oxida-
tive stress and systemic inflammation. Moreover, the 
retention of toxic metabolites in kidney dysfunction 
inhibits immune cell activation and increases their apop-
tosis, which leads to systemic immunosuppression [43].

Insulin resistance (IR) is a condition in which tissues’ 
response decreases to the stimulatory effect of insu-
lin, leading to hyperinsulinemia and hyperglycemia. IR 
plays an important role in the pathogenesis of T2DM 
and makes this population more vulnerable to infection. 
IR and its related hyperglycemia increase the production 
of interleukin-6(IL-6), IL-1β, and TNF-α and develop 
a chronic inflammation; therefore, impair the function 
of the immune system [44]. Hyperinsulinemia increases 
membrane expression of ACE2, which serves as the 
receptor for COVID-19 in host cells [45], thereby facili-
tating viral entry and amplifying viral load. Conventional 
methods utilized for the assessment of IR are often costly 
and require technical expertise that may not be available 
across clinical settings [46]. Recently, cost-effective and 
valuable biomarkers have been introduced for the esti-
mation of IR, including the TyG index [15], the TyG-BMI 
index [47], and the AIP [48].

We found the AIP and TyG index were two of the most 
critical risk factors for contracting COVID-19 among 
T2DM participants. A previous study on Iranian patients 
reported that the TyG index and TG/HDL-C ratio (AIP 
is equal to the base ten logarithm of this ratio) positively 
correlated with COVID-19 infection and prognosis [49]. 
Another study that considered diabetic patients showed 
the TyG index as a predictor for COVID-19 severity and 
mortality [50]. AIP was also shown to be associated with 
intubation and intensive care admission in hospitalized 
infected patients [51]. A few studies have investigated the 
relationship between the TyG-BMI index and COVID-19, 
such as a retrospective study on T2DM patients, which 
found that this index increased after contracting the viral 
infection [52]. We found the TyG-BMI index to be a risk 
factor for COVID-19 infection; however, its predictive 
value was lower than that of the AIP and TyG index.

IR promotes atherogenic dyslipidemia in the T2DM 
population by reducing HDL-C levels and increasing TG 
levels [53]. Furthermore, free fatty acids (FFA), which 
are generated during the breakdown of TG by lipopro-
tein lipase, exacerbate IR through numerous mecha-
nisms [54]; FFA activates the proinflammatory pathway 
in the skeletal muscle known as nuclear factor (NF-κB), 

resulting in the secretion of proinflammatory cyto-
kines and elevation in monocyte chemoattractant pro-
tein-1 (MCP-1) levels [55, 56]. MCP-1, in turn, leads to 
enhanced macrophage differentiation, thereby exacerbat-
ing the inflammatory state [57]. The present study found 
TG as a risk factor of equal importance to the AIP and 
TyG index for the development of COVID-19. Our find-
ings are in line with previous studies that found TG levels 
as a predictor of the infection severity [58, 59].

Hypertension has been recognized as a potential risk 
factor for COVID-19, with a prevalence ranging from 
27 to 34.6% among infected patients [60, 61]. Factors 
involved in blood pressure regulation, notably sodium 
level, aldosterone, and angiotensin II, contribute to the 
generation of reactive oxygen species. The background 
inflammation disturbs cell signaling and cell activation, 
especially within the immune system [62–65]. The dys-
regulated innate and adaptive immune cells produce sev-
eral cytokines and worsen the inflammation [63, 65].

In addition to chronic inflammation, there are several 
factors related to hypertension that increase susceptibil-
ity to infection. These include a reduction in lympho-
cyte count [66], activation of inefficient CD8 + cell types 
in antiviral defense [67], and vascular stiffness [68, 69]. 
Interestingly, we found that high diastolic blood pres-
sure was approximately five times more important than 
high systolic blood pressure in predisposing individuals 
to COVID-19 (Fig. 3).

The present study found that BMI, weight, and TC lev-
els had equivalent risks of contracting the infection. Fol-
lowing these factors, the importance of FPG, HbA1C, 
Creatinine, systolic blood pressure, BUN, and LDL-C lev-
els decreased as risk factors for COVID-19, respectively.

To the best of our knowledge, this is the first study to 
employ ML algorithms to value metabolic and clinical 
parameters, which are commonly assessed during fol-
low-up visits for individuals with T2DM, in predicting 
COVID-19 susceptibility. Therefore, the outcomes of the 
present study can help healthcare practitioners evaluate 
and score the risk factors associated with infection in this 
population, leading to better clinical decision-making.

The primary limitation of our study is the small sam-
ple size of each group because of our inclusion criteria. 
We enrolled individuals who received regular follow-up 
in our outpatient clinic at least once every three months 
and whose T2DM was well-controlled. Also, we only 
included those with laboratory measurements obtained 
within three months before the pandemic onset in Iran, 
which further limited the sample size. The lack of data 
on urine analysis and albuminuria resulted in their omis-
sion from the final model, which should be considered 
as a limitation in the interpretation of the findings. The 
ML method applied in this study follows standard analy-
sis protocols. While our findings may be helpful for the 
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development of future diagnostic or therapeutic inter-
ventions, it is important to note that the current research 
does not involve any product, device, or therapeutic 
intervention subject to FDA regulations.

Conclusion
In this study, it was found that TG levels and IR mark-
ers (AIP and TyG-index) are the most significant risk fac-
tors for COVID-19 susceptibility in the population with 
T2DM. Furthermore, diastolic blood pressure, TyG-BMI 
index, BMI, weight, TC levels, FPG, HbA1C, creatinine, 
systolic blood pressure, BUN, and LDL-C levels showed 
decreased significance as risk factors. Conversely, HDL-C 
levels, followed by eGFR, were identified as the protec-
tive factor against the infection.
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