
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t    t p : / / c r e  a   t i 
v e  c  o  m  m  o n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 /     .   

Qiu et al. BMC Endocrine Disorders          (2024) 24:238 
https://doi.org/10.1186/s12902-024-01769-0

BMC Endocrine Disorders

*Correspondence:
Guotai Sheng
tgs200509@163.com
Yang Zou
jxyxyzy@163.com

Full list of author information is available at the end of the article

Abstract
Background The Metabolic Insulin Resistance Score (METS-IR) is a non-invasive proxy for insulin resistance (IR) that 
has been newly developed in recent years and has been shown to be associated with diabetes risk. Our aim was to 
assess the predictive value of METS-IR for the future development of diabetes and its temporal differences in people 
of different sex, age, and body mass index (BMI).

Methods The current study included 15,453 baseline non-diabetic subjects in the NAGALA cohort and then 
grouped according to the World Health Organization’s (WHO) recommended criteria for age and BMI. Multivariate 
Cox regression and time-dependent receiver operator characteristics (ROC) curves were used to analyze the value of 
METS-IR in assessing and predicting the risk of diabetes in people of different sexes, ages, and BMIs.

Results 373 individuals developed diabetes during the observation period. By multivariate COX regression analysis, 
the development of future diabetes was significantly associated with increased METS-IR, and this positive association 
was stronger in women than in men and in individuals < 45 years than in individuals ≥ 45 years; while no significant 
differences were observed between non-obese and overweight/obesity individuals. Using time-dependent ROC 
analysis we also assessed the predictive value of METS-IR for future diabetes at a total of 11-time points between 2 
and 12 years. The results showed that METS-IR had a higher predictive value for the future development of diabetes 
in women or individuals < 45 years of age compared to men or individuals ≥ 45 years of age for almost the entire 
follow-up period. Furthermore, across different BMI categories, we also found that in the short term (3–5 years), 
METS-IR had a higher predictive value for the development of diabetes in individuals with overweight/obesity, while 
in the medium to long term (6–12 years), METS-IR was more accurate in predicting the development of diabetes in 
non-obese individuals.
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Background
The prevalence of diabetes is increasing year on year and 
has become a major public health challenge worldwide, 
with an estimated 783.2 million people, or approximately 
12.2% of the global population, expected to have diabe-
tes by 2045 [1]. To make matters worse, the long duration 
of diabetes and its various complications place a huge 
burden on the individual, both mentally and physically, 
and on the family finances of those with diabetes [2]. 
Thankfully, however, people at high risk of diabetes can 
prevent/delay disease progression through early lifestyle 
interventions [3, 4], and the core of prevention strate-
gies is the early identification and screening of individu-
als at high risk of diabetes [5]. Therefore, finding simple 
and effective screening and risk prediction tools for at-
risk populations can inform clinical decision-making by 
physicians and public health policy formulation, thereby 
reducing the incidence of diabetes in the population and 
ultimately improving public health.

IR, defined as reduced insulin sensitivity, is a major 
pathophysiological feature of type 2 diabetes [6], usually 
precedes the onset of diabetes [7], and is an important 
driver of the onset of diabetes in the future [8]. There-
fore, accurate measurement of IR can not only improve 
the identification of individuals at high risk of diabetes 
but also enhance the prediction of future diabetes. How-
ever, the euglycemic-hyperinsulinemic clamp (EHC), the 
gold standard for measuring IR, is not only expensive and 
invasive [9], but its use as a health screening tool in clini-
cal practice seems less applicable. As an alternative, many 
researchers have developed indirect methods for assess-
ing IR, including insulin homeostasis models and quanti-
tative insulin sensitivity check indices [10]. However, the 
clinical application of these methods is limited due to the 
atypical measurement of serum insulin [11, 12], so there 
is a need to find simpler, inexpensive alternative methods 
suitable for widespread health screening.

METS-IR is a new cardiometabolic risk score recently 
developed by Prof. Bello-Chavolla OY, and the score 
includes glucose parameters (fasting plasma glucose: 
FPG), lipid parameters [triglyceride (TG) and high-
density lipoprotein cholesterol (HDL-C)], and obesity 
parameters (BMI), which has a good fit with EHC and 
is considered to be a promising alternative to IR [13]. 
To date, several studies have pointed to the METS-IR 
as a useful indicator for assessing the risk of diabetes 
and have suggested that the METS-IR should be used in 
large epidemiological surveys as well as clinical screening 

[14–17]; it is important to note that, given a large number 
of components of the METS-IR, which may vary consid-
erably in different populations, identifying the METS-IR 
for assessing/predicting the applicable groups for diabe-
tes is necessary. To address this issue, the current study 
pre-grouped sex, age, and BMI according to WHO-
recommended criteria by constructing time-dependent 
ROC curves at multiple follow-up time points to assess 
the predictive value of baseline METS-IR for the future 
development of diabetes and its variability in different 
populations.

Methods
Data sources
The data used in the current study was sourced from 
the Dryad public database and the original data was 
uploaded and shared by Professor Okamura’s team  (   h t  t p s  
: / / d  o i  . o r g / 1 0 . 5 0 6 1 / d r y a d . 8 q 0 p 1 9 2     ) [18]. Under the terms 
of the Dryad database service, all researchers can use the 
data in the database for in-depth analysis and dissemina-
tion of new knowledge.

The dataset used for the current study contained data 
from a longitudinal cohort study conducted at Murakami 
Memorial Hospital in Japan between 1994 and 2016. The 
design and implementation steps of the study have been 
described in detail by Professor Okamura et al. in a previ-
ous study [19]. In summary, the cohort was established 
in 1994 and has continued to date; the study population 
was the general population enrolled consecutively during 
the study period for health screening at the Murakami 
Memorial Hospital Health Screening Centre and the aim 
of the study was to investigate common risk factors for 
the onset of diabetes and fatty liver disease. Based on 
the previous study, the current study aimed to use this 
publicly available dataset to further assess the predic-
tive value of the baseline METS-IR for future diabetes 
and its changes in different populations, and thus pro-
vide more accurate health advice for diabetes prevention 
and treatment in the population. We extracted data from 
this dataset of 20,944 individuals who underwent health 
screening between 1994 and 2016, including demo-
graphic variables (sex, age), lifestyle variables (exercise, 
smoking, and drinking habits), and health status ques-
tionnaires (diabetes and history of liver disease), as well 
as the results of medical examinations at health screening 
centers [including laboratory test data, measured height, 
weight, waist circumference (WC), and blood pressure, 
etc.]

Conclusions Our study showed that METS-IR was independently associated with the development of future diabetes 
in a non-diabetic population. METS-IR was a good predictor of diabetes, especially for women and individuals < 45 
years old for predicting the future risk of developing diabetes at all times.
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For the purposes of the current study, we excluded 
participants with a combination of the following charac-
teristics: 323 participants with diabetes at baseline, 808 
participants with FPG over 6.1 mmol/L, 416 participants 
with liver disease (other than fatty liver), 739 participants 
with excessive alcohol consumption (over 60  g/day for 
men and 40  g/day for women), 2,321 participants using 
medication at baseline (including but not limited to anti-
diabetic drugs, lipid-lowering drugs, antihypertensive 
drugs, and hormone), 874 participants with missing data 
and 10 participants who withdrew for unknown reasons. 
Ultimately, we included 15,453 eligible participants for 
subsequent study analysis, and the exact exclusion pro-
cess was shown in Fig. 1.

Ethical approval and consent to participate
Informed consent for the use of study data has been 
reported in previous studies where participant authori-
zation was obtained and research ethics was approved 
by the Ethics Committee of Murakami Memorial Hos-
pital [19]. The present study was conducted as a sec-
ondary analysis and the identifiable information of the 
participants was de-identified. The ethics committee of 
the authors’ research institution (Jiangxi Provincial Peo-
ple’s Hospital) reviewed and approved the protocol of the 
current study (IRB2021-066), waived duplicate applica-
tions for informed consent from participants, and super-
vised the entire study See STROBE statement (S1 Text).

Data acquisition and collection
As reported in the previous article [19], a standard-
ized questionnaire was used to collect information on 

Fig. 1 Flowchart of the selection process of study participants
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demographic characteristics, lifestyle (exercise habits, 
smoking and drinking status), and health status (includ-
ing disease history and medication use). Physical mea-
surement parameters including height, weight, WC, 
blood pressure, and other information were measured 
by standard methods in a quiet environment. Laboratory 
test data included blood lipids [total cholesterol (TC), 
TG, HDL-C], blood glucose parameters [FPG and hemo-
globin A1c (HbA1c)], liver function enzymes indicators 
[aspartate aminotransferase (AST), gamma-glutamyl 
transferase (GGT), and alanine aminotransferase (ALT)] 
were measured by an automated biochemical analyzer 
using an 8-hour overnight fasted venous blood sample; 
additionally, low-density lipoprotein cholesterol (LDL-
C) concentrations were calculated using the Friedewald 
equation.

The diagnosis of fatty liver was made on the basis of 
ultrasound. After the abdominal ultrasound images have 
been acquired by a trained technician, the four main 
assessment criteria of deep attenuation, hepatorenal echo 
contrast, liver brightness, and vascular blurring were 
analyzed and diagnosed by an experienced gastroenter-
ologist [20].

Calculations and definitions
METS-IR = (Ln ((2*FPG) + TG)*BMI)/(Ln (HDL-C)). Tri-
glyceride-Glucose (TyG) index = Ln((TG × FPG)/2). Note: 
The measurement unit of FPG and TG was mg/dl [13].

Exercise habits: Participants were categorized into 
those with exercise habits (> 1 time per week) and those 
with no exercise habits (< 1 time per week), based on par-
ticipants’ weekly exercise [21].

Drinking status: Participants were categorized into 
non/small drinking (< 40  g/week), light drinking (40–
140  g/week), moderate drinking (140–280  g/week), and 
heavy drinking (> 280  g/week), based on their alcohol 
consumption in the month prior to the baseline survey 
[22].

Smoking status: Participants were classified into non-
smokers, past smokers, and current smokers, based on 
their self-reported smoking history at baseline.

Outcome
The primary outcome was diabetes diagnosed during the 
follow-up period. According to the American Diabetes 
Association criteria [23], participants were diagnosed as 
having diabetes if they had one of the following criteria: 
(1) FPG ≥ 7.0 mmol/L; (2) HbA1c ≥ 6.5%; and (3) diabetes 
diagnosed by other medical personnel.

Predefined subgroups
Sex subgroups: All participants were divided into men 
and women groups.

Age subgroups: Based on the standard of WHO in 2012 
[24], people were divided into two groups: age ≥ 45 years 
old and age < 45 years old.

BMI subgroups: The population was divided into two 
groups, overweight/obesity (BMI ≥ 25  kg/m2) and non-
obese (BMI < 25  kg/m2), based on the WHO recom-
mended criteria for classifying BMI in Asians [25].

Statistical analysis
We compared participants’ baseline data in groups 
according to whether they developed diabetes in the 
future. Clinical variables that were skewed distributed 
(including ALT, AST, GGT) were expressed as median 
(interquartile range), normally distributed variables were 
expressed as mean [standard deviation (SD)], and cat-
egorical variables were expressed as frequency (%). The 
inverse probability of treatment weighting method was 
used to calculate the standardized difference to quantify 
the size of the difference between groups, and a standard-
ized difference > 10% was considered significant [26, 27].

The association of METS-IR with diabetes in different 
sexes, BMIs, and age groups was analyzed using Cox pro-
portional hazard regression models, with hazard ratios 
(HRs) per SD increase and 95% confidence intervals (CIs) 
used to record the results. Before building the models, we 
used the Kaplan-Meier method to plot the log-integrated 
hazard versus time to assess the proportional hazards 
assumption (Supplementary Fig.  1) [28], and calculated 
the variance inflation factor to evaluate the collinear-
ity of METS-IR with other covariates when diabetes was 
used as the dependent variable [29]. For a variance infla-
tion factor of less than 5 was considered acceptable in the 
current study (Supplementary Table 1). Three stepwise 
adjusted multivariate Cox proportional hazards regres-
sion models were constructed to explore the association 
between METS-IR and diabetes risk [30]. In the Model 
1, we mainly considered the impact of general demo-
graphic factors and lifestyle factors on the outcome, in 
which covariates such as height, smoking status, drink-
ing status, exercise habits, and fatty liver were included in 
the Cox model for adjustment; In the Model 2, we further 
adjusted the liver enzyme indexes ALT, AST and GGT on 
the basis of Model 1; and in the final model (Model 3), we 
further adjusted the blood lipid parameters TC and TG, 
blood pressure parameter (systolic blood pressure) and 
blood glucose parameter HbA1c. In addition, based on 
the Model 3, we also examined the differences in METS-
IR-related diabetes risk among different subgroups using 
the likelihood ratio test.

In order to evaluate the predictive value of METS-IR 
for the onset of diabetes at different times in the future, 
we used the survival ROC package to draw time-depen-
dent ROC curves to evaluate the predictive ability of 
METS-IR for the onset of diabetes in different subgroups 
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and recorded prediction thresholds for corresponding 
time points. To minimize the impact of reverse causality 
on the association, we evaluated the predictive value of 
METS-IR for the onset of diabetes at a total of 11-time 
points between 2 and 12 years in a time-dependent ROC 
analysis [31]. Then, we used the R-ggplot2 package to 
draw the line graphs of the area under the ROC curves 
(AUC) and prediction thresholds of different subgroups 
over time to visually show the trend of AUC and pre-
diction thresholds in different subgroups over time. In 

addition, to further assess the performance of METS-IR 
in predicting future diabetes, we also compared it with 
other established surrogates for IR in diabetes risk, such 
as the TyG index.

R language statistical software (version 4.2.1) was used 
for time-dependent ROC analysis and picture draw-
ing. Empower(R) software (version 2.20) was used for 
all other statistical analyses. In all analyses, a P value   less 
than 0.05 was considered significant.

Results
Baseline characteristics of the study population
This study included 15,453 participants whose baseline 
characteristics met the criteria. During a mean obser-
vation period of 6.13 years (Min-Max: 0.46–13.14), 373 
participants developed diabetes. Overall, there were sig-
nificant differences in baseline characteristics between 
those who would develop diabetes in the future and 
those who would not (all standardized differences were 
> 10%). In terms of demographic data, participants who 
had developed diabetes during the follow-up period were 
generally older at baseline and more likely to be men 
(76.68%); in terms of physical measurements, partici-
pants who had developed diabetes during the follow-up 
period had relatively higher height, weight, and blood 
pressure at baseline; in terms of lifestyle, participants 
who had developed diabetes during the follow-up period 
usually had a higher proportion of smoking (61.13%) and 
drinking habits at baseline, while a lower proportion of 
exercising habits; in terms of laboratory data, participants 
who had developed diabetes during the follow-up period 
had lower levels of baseline HDL-C and higher levels of 
baseline ALT, AST, GGT, TC, TG, LDL-C, HbA1c, and 
FPG than those without diabetes. Moreover, we also 
found that participants with diabetes had significantly 
higher baseline METS-IR than those without (Tables  1 
and 38.58 vs. 30.98).

Association between METS-IR and diabetes
The association between METS-IR and diabetes was 
explored in the total population and subgroup popula-
tions, respectively (Table  2). The results showed that 
METS-IR was positively correlated with diabetes in the 
total population, regardless of whether confounders 
were adjusted for in the models (Crude model: HR = 2.26, 
95%CI = 2.10–2.43; Mode 1: HR = 1.76, 95%CI = 1.59–
1.94; Mode 2: HR = 1.72, 95%CI = 1.55–1.91; Mode 3: 
HR = 1.41, 95%CI = 1.24–1.61). In addition, we further 
assessed the association of METS-IR quartiles as categor-
ical variables with diabetes. The results showed that the 
high METS-IR group presented a significantly higher risk 
of developing diabetes in all models. In the final model, 
subjects in the highest quartile of the METS-IR group 

Table 1 Baseline demographic, lifestyle, and laboratory 
characteristics in participants with and without diabetes

Nondiabetic Diabetes Standardized 
Difference
(95% CI), %

Participants (n) 15,080 373
Age (years) 43.63 (8.89) 47.14 (8.52) 40 (30, 51)
Sex 49 (39, 59)
Women 6947 (46.07%) 87 (23.32%)
Men 8133 (53.93%) 286 (76.68%)
Height (m) 1.65 (0.08) 1.67 (0.09) 19 (9, 29)
Weight (kg) 60.41 (11.48) 69.84 (13.32) 76 (66, 86)
BMI (kg/m2) 22.04 (3.07) 25.03 (3.82) 86 (76, 97)
ALT (IU/L) 17.00 

(13.00–23.00)
24.00 
(18.00–39.00)

67 (56, 77)

AST (IU/L) 17.00 
(14.00–21.00)

20.00 
(16.00–26.00)

44 (34, 55)

GGT (IU/L) 15.00 
(11.00–22.00)

24.00 
(17.00–36.00)

47 (37, 58)

HDL-C (mg/dl) 56.81 (15.54) 45.92 (12.72) 77 (66, 87)
TC (mg/dl) 197.93 (33.33) 209.95 (34.68) 35 (25, 46)
TG (mg/dl) 79.50 (56.58) 132.76 (86.65) 73 (62, 83)
LDL-C (mg/dl) 119.06 (28.82) 134.35 (29.43) 53 (42, 63)
HbA1c (%) 5.16 (0.32) 5.53 (0.37) 107 (97, 118)
FPG (mg/dl) 92.76 (7.34) 101.14 (6.43) 121 (111, 132)
METS-IR 30.98 (6.36) 38.58 (7.74) 107 (97, 118)
SBP (mmHg) 114.31 (14.91) 122.03 (15.59) 51 (40, 61)
DBP (mmHg) 71.44 (10.47) 77.18 (10.23) 55 (45, 66)
Fatty liver 2514 (16.67%) 223 (59.79%) 99 (89, 109)
Exercise habits 2655 (17.61%) 51 (13.67%) 11 (1, 21)
Drinking status 21 (11, 31)
Non/small 11,536 (76.50%) 266 (71.31%)
Light 1714 (11.37%) 40 (10.72%)
Moderate 1320 (8.75%) 37 (9.92%)
Heavy 510 (3.38%) 30 (8.04%)
Smoking status 45 (35, 55)
None 8882 (58.90%) 145 (38.87%)
Past 2872 (19.05%) 77 (20.64%)
Current 3326 (22.06%) 151 (40.48%)
Values were expressed as mean (SD) or median (interquartile range) or n (%). 
Abbreviations: BMI: body mass index; ALT: alanine aminotransferase; AST: 
aspartate aminotransferase; GGT: gamma-glutamyl transferase; HDL-C: high-
density lipoprotein cholesterol; TC: total cholesterol; TG: triglyceride; LDL-C: low 
density lipoprotein cholesterol; HbA1c: hemoglobin A1c; FPG: fasting plasma 
glucose; METS-IR: metabolic score for insulin resistance; SBP: systolic blood 
pressure; DBP: diastolic blood pressure
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had a 215% increased risk of diabetes compared to the 
lowest quartile group.

We further conducted stratified analyses according 
to the pre-defined subgroups, and the results showed 
that diabetes risk associated with METS-IR was higher 
in women than in men (Model 3, HR: 1.62 vs. 1.40), 
higher in the population younger than 45 years than in 
those ≥ 45 years (Model 3, HR: 1.72 vs. 1.26), and higher 
in the population with overweight/obesity than that in 
the non-obese population (Model 3, HR: 1.59 vs. 1.33). 
While in the subsequent interaction tests, we identified 
significant differences in the association of METS-IR 
with diabetes risk between the sex and age subgroups (P 
for interaction < 0.05), but not in the BMI subgroups (P 
for interaction = 0.78).

Predictive value of the baseline METS-IR for the onset of 
future diabetes in different populations
The effectiveness of METS-IR in predicting the onset 
of diabetes over the next 2–12 years was assessed using 
time-dependent ROC curves. Tables 3, 4 and 5 show the 
results of time-dependent ROC analysis in the sex, age, 
and BMI subgroups, respectively, and the corresponding 
AUC curves were shown in Fig. 2.

In the sex subgroups, we observed that METS-IR 
was more accurate in predicting the future onset of 

diabetes in women than in men, regardless of time varia-
tion [AUC: year-2: (women) 0.68 > 0.62 (men); year-3: 
(women) 0.70 > 0.67 (men); year-4: (women) 0.72 > 0.64 
(men); year-5: (women) 0.73 > 0.67 (men); year-6: 
(women) 0.76 > 0.68 (men); year-7: (women) 0.76 > 0.70 
(men); year-8: (women) 0.77 > 0.70 (men); year-9: 
(women) 0.76 > 0.70 (men); year-10: (women) 0.75 > 0.71 
(men); year-11: (women) 0.76 > 0.70 (men); year-12: 
(women) 0.76 > 0.67 (men)]. In addition, further analysis 
revealed that the predictive accuracy of METS-IR tended 
to increase in the short term (2–6 years) in women 
(AUCs of 0.68,0.70,0.72,0.73,0.76 for year-2 to year-6, 
respectively) and remained high in the medium to long 
term (7–12 years).

In the age subgroups, we found that METS-IR was 
more accurate in predicting the future onset of diabetes 
in individuals aged < 45 years compared to those aged ≥ 45 
years, except in year-2 [AUC: year-3: (age ≥ 45) 0.67 < 0.76 
(age < 45); year-4: (age ≥ 45) 0.65 < 0.76 (age < 45); year-
5: (age ≥ 45) 0.69 < 0.78 (age < 45); year-6: (age ≥ 45) 
0.70 < 0.79 (age < 45); year-7: (age ≥ 45) 0.71 < 0.81 
(age < 45); year-8: (age ≥ 45) 0.73 < 0.79 (age < 45); year-
9: (age ≥ 45) 0.71 < 0.78 (age < 45); year-10: (age ≥ 45) 
0.71 < 0.79 (age < 45); year-11: (age ≥ 45) 0.69 < 0.79 
(age < 45); year-12: (age ≥ 45) 0.66 < 0.79 (age < 45)], and 

Table 2 Cox regression analyses for the association between METS-IR and incident diabetes in different models grouped by sex, age 
and BMI

Hazard ratios (95% confidence interval)
Crude Model Model 1 Model 2 Model 3 Interaction coefficient P for 

inter-
action

METS-IR (Total) 2.26 (2.10, 2.43) ** 1.76 (1.59, 1.94) ** 1.72 (1.55, 1.91) ** 1.47 (1.30, 1.68) **
METS-IR quartiles
Q1 Ref Ref Ref Ref
Q2 2.69 (1.46, 4.95) 2.53 (1.37, 4.65) 2.54 (1.38, 4.67) 2.27 (1.23, 4.18)
Q3 4.99 (2.82, 8.81) 3.57 (2.00, 6.40) 3.50 (1.96, 6.27) 2.31 (1.28, 4.16)
Q4 15.52 (9.05, 26.60) 6.61 (3.70, 11.82) 6.18 (3.45, 11.08) 3.15 (1.71, 5.77)
Sex -0.22 (-0.42, -0.02) 0.03
Women (per SD increase) 2.84 (2.42, 3.33) ** 1.97 (1.59, 2.45) ** 1.93 (1.55, 2.40) ** 1.62 (1.24, 2.13) **
Men (per SD increase) 2.08 (1.90, 2.28) ** 1.67 (1.49, 1.87) ** 1.61 (1.42, 1.81) ** 1.40 (1.20, 1.64) **
Age (years) 0.20 (0.03, 0.38) 0.02
≥ 45 (per SD increase) 2.11 (1.87, 2.37) ** 1.65 (1.42, 1.92) ** 1.60 (1.38, 1.87) ** 1.26 (1.04, 1.51) *
< 45 (per SD increase) 2.49 (2.26, 2.75) ** 1.88 (1.64, 2.16) ** 1.83 (1.58, 2.12) ** 1.72 (1.43, 2.07) **
BMI (kg/m2) 0.01 (-0.23, 0.26) 0.91
≥ 25 (per SD increase) 1.99 (1.73, 2.29) ** 1.64 (1.40, 1.93) ** 1.61 (1.37, 1.91) ** 1.59 (1.29, 1.95) **
< 25 (per SD increase) 2.62 (2.21, 3.11) ** 1.98 (1.60, 2.45) ** 1.92 (1.55, 2.38) ** 1.33 (1.01, 1.76) *
For all Cox regression models in the current study, our data passed the assumptions of proportional hazards and multicollinearity

Abbreviations: METS-IR: metabolic score for insulin resistance; BMI: body mass index

Crude model adjusted for none

Model 1 adjusted for height, fatty liver, exercise habits, drinking status and smoking status

Model 2 adjusted for height, fatty liver, exercise habits, drinking status, smoking status, ALT, AST and GGT

Model 3 adjusted for height, fatty liver, exercise habits, drinking status, smoking status, ALT, AST, GGT, TC, TG, HbA1c and SBP

*represents p < 0.05; **represents p < 0.01
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still maintained high accuracy in the medium to long 
term (AUCs for year-6 to year-12 were above 0.79).

Similarly, we also reported the findings in the BMI 
subgroups; time-dependent ROC analysis showed that 
in the short term (3–5 years), METS-IR was more accu-
rate in predicting the future onset of diabetes in popula-
tion with overweight/obesity[AUC: year-3: (BMI ≥ 25 kg/
m2) 0.67 > 0.64 (BMI < 25  kg/m2); year-4: (BMI ≥ 25  kg/
m2) 0.67 > 0.64 (BMI < 25  kg/m2); year-5: (BMI ≥ 25  kg/
m2) 0.66 > 0.65(BMI < 25 kg/m2)], whereas in the medium 
to long term, METS-IR had higher accuracy in predict-
ing the future onset of diabetes in non-obese population 
[AUC: year-6: (BMI ≥ 25 kg/m2) 0.65 < 0.69 (BMI < 25 kg/
m2); year-7: (BMI ≥ 25  kg/m2) 0.68 < 0.70 (BMI < 25  kg/
m2); year-8: (BMI ≥ 25  kg/m2) 0.69 < 0.71 (BMI < 25  kg/
m2); year-9: (BMI ≥ 25  kg/m2) 0.68 < 0.70 (BMI < 25  kg/
m2); year-10: (BMI ≥ 25  kg/m2) 0.66 < 0.70 (BMI < 25  kg/
m2); year-11: (BMI ≥ 25  kg/m2) 0.66 < 0.70 (BMI < 25  kg/
m2); year-12: (BMI ≥ 25  kg/m2) 0.66 < 0.68 (BMI < 25  kg/
m2)].

Threshold analysis of baseline METS-IR for predicting the 
future onset of diabetes in different populations
Data on threshold values of METS-IR for predicting 
the future onset of diabetes in the sex, age, and BMI 

subgroups were also shown in Tables  3, 4 and 5, and 
Fig. 3 describes the trend of METS-IR predictive thresh-
olds over time in different subgroups. As seen in Fig. 3, 
the predictive thresholds of METS-IR for predicting 
future diabetes were consistently higher in men than in 
women regardless of time changes and were less fluc-
tuated in both sexes in different time points, suggest-
ing that the threshold values of METS-IR for predicting 
future diabetes were relatively stable in both sexes and 
METS-IR had good application value (range of predic-
tive thresholds: men: 34.81–37.42; women: 27.50-29.33). 
In contrast, the difference in predictive thresholds of 
METS-IR was not significant between the two age sub-
groups, but the fluctuations were relatively larger in the 
group of age < 45 years (range of predictive threshold: 
age ≥ 45: 32.98–35.95; age < 45: 31.46–38.06). Similar 
trends were observed in the BMI subgroups as in the sex 
subgroups, and as expected, the predictive thresholds 
of METS-IR were greater in the population with over-
weight/obesity than in the non-obese population, and 
were less fluctuated in both overweight/obesity and non-
obese populations at all time points (range of predictive 
threshold: overweight/obesity: 38.42–42.31; non-obese: 
27.36–30.77).

Table 3 Prediction threshold, sensitivity, specificity and areas under the time-dependent receiver operating characteristic curves for 
METS-IR predicting future diabetes risk for women and men

Women Men
Prediction threshold Sensitivity Specificity AUC Prediction threshold Sensitivity Specificity AUC

METS-IR
2-years 28.58 0.71 0.63 0.68 36.94 0.52 0.72 0.62
3-years 29.31 0.64 0.68 0.70 36.94 0.60 0.72 0.67
4-years 27.90 0.75 0.58 0.72 36.74 0.54 0.71 0.64
5-years 27.90 0.76 0.58 0.73 37.02 0.55 0.73 0.67
6-years 29.20 0.71 0.68 0.76 37.39 0.52 0.74 0.68
7-years 29.31 0.72 0.69 0.76 36.74 0.61 0.72 0.70
8-years 29.22 0.73 0.68 0.77 36.74 0.60 0.72 0.70
9-years 27.50 0.86 0.55 0.76 36.83 0.58 0.72 0.70
10-years 29.00 0.73 0.67 0.75 36.49 0.61 0.71 0.71
11-years 29.33 0.72 0.69 0.76 34.81 0.67 0.63 0.70
12-years 29.33 0.71 0.70 0.76 37.42 0.50 0.76 0.67
TyG index
2-years 7.90 0.77 0.64 0.64 8.77 0.47 0.79 0.62
3-years 7.92 0.84 0.62 0.71 8.51 0.60 0.66 0.64
4-years 7.98 0.76 0.69 0.72 8.51 0.60 0.66 0.64
5-years 7.92 0.81 0.64 0.73 8.49 0.61 0.65 0.65
6-years 7.98 0.73 0.69 0.73 8.26 0.75 0.50 0.65
7-years 7.99 0.74 0.69 0.73 8.49 0.63 0.65 0.67
8-years 7.98 0.73 0.69 0.73 8.49 0.63 0.65 0.67
9-years 7.99 0.75 0.70 0.74 8.50 0.60 0.66 0.66
10-years 8.01 0.72 0.71 0.73 8.25 0.75 0.50 0.65
11-years 8.00 0.74 0.71 0.74 8.25 0.73 0.50 0.65
12-years 8.01 0.76 0.71 0.76 8.50 0.56 0.67 0.64
Abbreviations: AUC: area under the curve; TyG: Triglyceride-Glucose; other abbreviations as in Table  1
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Comparison of predictive value between METS-IR and TyG 
index
The results of time-dependent ROC analysis comparing 
METS-IR with TyG for predicting future diabetes were 
presented in Tables  3, 4 and 5. The results showed that 
the AUC values for the prediction of future diabetes by 
METS-IR were higher at the vast majority of time points 
compared to the TyG index, demonstrating relatively bet-
ter predictive performance.

Discussion
In this current retrospective cohort study, we further 
validated previous findings showing that METS-IR was 
significantly associated with diabetes risk. After adjusting 
for confounders that may have influenced the results, the 
results of the stratified analysis showed that the positive 
association between METS-IR and diabetes was stronger 
in women than in men and in population < 45 years of age 
than in population ≥ 45 years of age (P-interaction < 0.05), 
while no significant differences were observed between 
non-obese population and population with overweight/
obesity (P-interaction = 0.78). In addition, as the main 
analysis results, the time-dependent ROC analysis 
showed that: (1) METS-IR was more accurate in predict-
ing the future onset of diabetes in women than in men, 

and remained more accurate in the medium to long term; 
(2) at almost all time points, METS-IR was more accurate 
in predicting the future onset of diabetes in people aged 
less than 45 years than in those aged ≥ 45 years; (3) in the 
short term (3–5 years), METS-IR was more accurate in 
predicting new diabetes events in the population with 
overweight/obesity, while in the medium to long term 
(6–12 years), METS-IR was more accurate in the non-
obese population.

In recent years, METS-IR has gained much attention 
as an emerging alternative index of IR. Compared with 
methods such as EHC, insulin homeostasis model, and 
quantitative insulin sensitivity check index, METS-IR is 
more convenient to be obtained and can be calculated 
using some routine laboratory biochemical indicators, 
which seems more suitable for a wide range of health 
screening. METS-IR was developed in 2018 by Bello-
Chavolla OY et al. They verified in three cohorts that 
METS-IR has a good correlation with IR by fat-free mass; 
furthermore, they assessed the relationship between 
METS-IR and diabetes risk and showed that diabetes 
risk increased with the increase of METS-IR percen-
tile [13]. Specifically, participants in the highest quartile 
group had a 291% increased risk of diabetes compared 
to participants in the lowest METS-IR quartile group. 

Table 4 Prediction threshold, sensitivity, specificity and areas under the time-dependent receiver operating characteristic curves for 
METS-IR predicting future diabetes risk for age ≥ 45 and < 45 years

Age, years
≥ 45 < 45
Prediction threshold Sensitivity Specificity AUC Prediction threshold Sensitivity Specificity AUC

2-years 35.73 0.48 0.75 0.66 38.06 0.37 0.86 0.64
3-years 35.95 0.48 0.76 0.67 37.29 0.63 0.84 0.76
4-years 35.70 0.45 0.75 0.65 36.15 0.63 0.81 0.76
5-years 33.91 0.59 0.67 0.69 36.15 0.62 0.81 0.78
6-years 33.78 0.63 0.67 0.70 31.67 0.81 0.62 0.79
7-years 33.91 0.65 0.68 0.71 35.57 0.69 0.79 0.81
8-years 33.46 0.69 0.66 0.73 31.46 0.85 0.62 0.79
9-years 34.45 0.60 0.71 0.71 31.67 0.81 0.63 0.78
10-years 32.98 0.68 0.63 0.71 31.66 0.84 0.63 0.79
11-years 32.98 0.65 0.63 0.69 31.67 0.84 0.63 0.79
12-years 33.36 0.57 0.65 0.66 31.75 0.84 0.64 0.79
TyG index
2-years 8.47 0.54 0.70 0.63 8.67 0.45 0.86 0.63
3-years 8.47 0.52 0.70 0.64 8.30 0.69 0.73 0.75
4-years 8.49 0.50 0.72 0.63 8.20 0.74 0.68 0.73
5-years 8.45 0.57 0.69 0.66 8.17 0.72 0.66 0.72
6-years 8.23 0.71 0.56 0.66 8.27 0.71 071 0.73
7-years 8.23 0.70 0.56 0.67 8.22 0.75 0.69 0.76
8-years 8.23 0.73 0.56 0.69 8.24 0.6* 0.70 0.73
9-years 8.18 0.74 0.53 0.67 8.27 0.69 0.72 0.74
10-years 8.18 0.76 0.53 0.68 8.23 0.69 0.70 0.73
11-years 8.20 0.71 0.54 0.67 8.20 0.71 0.69 0.73
12-years 8.20 0.70 0.55 0.65 8.21 0.71 0.69 0.74
Abbreviations: AUC: area under the curve; TyG: Triglyceride-Glucose; other abbreviations as in Table  1
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Subsequently, similar evidence of positive association 
was provided in two cross-sectional studies completed in 
China [14, 17] and validated in further longitudinal stud-
ies: In a 6-year longitudinal follow-up period of 12,107 
rural Chinese people, each SD increase in METS-IR was 
strongly associated with an 82% increase in diabetes risk 
[16]. In the current study, we conducted some longitu-
dinal analyzes based on the Japanese physical examina-
tion population cohort. We found that elevated METS-IR 
was associated with an increased risk of diabetes in the 
Japanese population; After adjusting for potential con-
founders, there was a 47% increase in the risk of future 
diabetes per SD increase in the METS-IR; compared to 
the lowest quartile group, subjects in the highest quartile 
group of the METS-IR had a 215% increased risk of dia-
betes. To summarize, the data on the association between 
METS-IR and future diabetes in the current study are 
consistent with those reported in previous studies, both 
as categorical and continuous variables [13, 14, 16, 17]. 
In the present study, we further performed stratified 
analyses for pre-defined age, sex, and BMI subgroups, 
and after adjusting for multiple confounders, we found 
that METS-IR was an independent risk factor for the 
onset of diabetes in all subpopulations. This was consis-
tent with the findings of a previously conducted study of 
a non-obese population defined by their BMI and WC 

(BMI ≤ 25 kg/m2 and WC ≤ 90 cm in men or WC ≤ 80 cm 
in women) [15]. In short, the vast majority of studies sup-
ported the association of METS-IR with the risk of type 
2 diabetes, and the results of our study, which used data 
from a large cohort study with a general population and 
a long follow-up period, provided new evidence for the 
previous findings. These findings underscored the con-
cept that METS-IR is a valid alternative to IR for assess-
ing diabetes risk in the general population.

The predictive value of METS-IR for future diabetes 
was previously reported only in a study by Cai XT et al. 
[15], who specifically assessed the predictive value of 
METS-IR for future new-onset diabetes in a non-obese 
population. Given that the current understanding of the 
predictive value of METS-IR for diabetes is based only on 
the non-obese population, we further performed a pre-
dictive value analysis in different subgroups of the general 
population, and the results were as expected, supporting 
the feasibility and validity of METS-IR for future diabetes 
prediction. In the current study, we evaluated the predic-
tive value of METS-IR for the onset of diabetes over the 
next 2–12 years using time-dependent ROC in pre-spec-
ified subgroups of sex, age, and BMI. Overall, METS-IR 
had good predictive power for the future onset of diabe-
tes in different populations. By sex subgroups, METS-IR 
was more accurate in predicting diabetes events in the 

Table 5 Prediction threshold, sensitivity, specificity and areas under the time-dependent receiver operating characteristic curves for 
METS-IR predicting future diabetes risk for BMI ≥ 25 and < 25 kg/m2

BMI, kg/m2

≥ 25 < 25
Prediction threshold Sensitivity Specificity AUC Prediction threshold Sensitivity Specificity AUC

2-years 38.42 0.86 0.32 0.61 27.36 0.85 0.38 0.62
3-years 40.22 0.83 0.48 0.67 27.38 0.89 0.39 0.64
4-years 40.55 0.77 0.52 0.67 27.38 0.87 0.39 0.64
5-years 42.31 0.60 0.67 0.66 27.47 0.87 0.39 0.65
6-years 41.54 0.64 0.61 0.65 27.80 0.87 0.42 0.69
7-years 42.15 0.64 0.66 0.68 28.63 0.80 0.49 0.70
8-years 42.25 0.63 0.68 0.69 30.67 0.67 0.64 0.71
9-years 42.26 0.60 0.68 0.68 30.67 0.66 0.64 0.70
10-years 42.25 0.55 0.68 0.66 30.77 0.67 0.65 0.70
11-years 42.07 0.57 0.67 0.66 30.19 0.71 0.61 0.70
TyG index
2-years 8.77 0.67 0.68 0.69 7.61 0.87 0.30 0.60
3-years 8.73 0.58 0.66 0.66 8.45 0.38 0.80 0.62
64-years 8.73 0.59 0.66 0.64 8.24 0.51 0.70 0.64
5-years 8.74 0.49 0.67 0.60 8.42 0.45 0.79 0.65
6-years 8.24 0.84 0.33 0.60 8.29 0.56 0.72 0.67
7-years 8.74 0.51 0.68 0.63 8.24 0.58 0.70 0.68
8-years 8.32 0.80 0.39 0.63 8.00 0.71 0.55 0.67
9-years 8.32 0.82 0.39 0.64 7.97 0.73 0.54 0.67
10-years 8.32 0.81 0.40 0.63 8.06 0.70 0.60 0.68
11-years 8.32 0.79 0.40 0.61 7.98 0.76 0.55 0.68
12-years 8.76 0.51 0.70 0.64 8.17 0.61 0.67 0.67
Abbreviations: AUC: area under the curve; TyG: Triglyceride-Glucose; other abbreviations as in Table  1
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Fig. 2 The area under the receiver operator characteristics curve of METS-IR varying with time to predict the future diabetes in the subgroup populations 
of sex (A), age (B), and BMI (C). AUC: area under the curve
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Fig. 3 Threshold fluctuations of METS-IR which was used to predict future diabetes in the subgroup populations of sex (A), age (B), and BMI (C)
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women population and remained stable over a longer 
period of time (AUC remained around 0.76). In terms of 
age subgroups, METS-IR was more accurate in predict-
ing diabetes events in people younger than 45 years of 
age and remained more accurate in the next 7–12 years 
(AUC remained around 0.79). In contrast, there were 
temporal differences in the predictive value of METS-IR 
in BMI subgroups, with higher predictive accuracy for 
the development of diabetes in the population with over-
weight/obesity in the short term, while higher in the non-
obese population in the medium-to long-term. It should 
be noted that in the age subgroups of the current study, 
the incidence of diabetes in people older than 45 years 
(2.78/1000 person-years) is actually higher than that of 
people younger than 45 years (1.39/1000 person-years); 
however, in terms of diabetes prediction, the METS-IR 
demonstrated significantly higher predictive accuracy 
for individuals younger than 45 years old than for those 
older than 45 years old. Regarding the differences in the 
results of the above subgroups, we have the following 
considerations: (1) It is well known that there are signifi-
cant differences in body composition between males and 
females; in general, males have a relatively higher lean 
body mass while females have a relatively higher fat mass 
[32]. It should be pointed out that high lean body mass 
is an important protective factor for diabetes [33], while 
high-fat mass is a risk factor for diabetes [34]. In fact, the 
METS-IR formula includes BMI, and typically males have 
higher lean body mass and females have higher fat mass 
at the same BMI level. Therefore, compared to males, 
the same METS-IR level may indicate a higher risk of 
developing diabetes in females, thereby demonstrating 
greater accuracy in predicting diabetes. In addition, it is 
important to note that females are generally less physi-
cally active than males [35], and physical activity can help 
reduce the risk of diabetes [36]. (2) For age subgroup 
differences, we consider the following factors: It is well-
known that increasing age is an important non-mod-
ifiable risk factor in the development of diabetes [37]. 
Studies have shown that with aging, insulin secretion 
and insulin sensitivity well decline, and impaired glucose 
metabolism may lead to an increased incidence of diabe-
tes [38, 39]. Additionally, older participants may already 
have a certain degree of IR, with compensatory increased 
pancreatic beta-cell function [40], which could reduce 
the sensitivity of METS-IR in reflecting their IR. On the 
other hand, age is an important factor affecting lipid 
metabolism, and there is evidence that HDL-C decreases 
gradually with aging [41]. Therefore, aging may lead to 
an increase in fasting blood glucose and a decrease in 
HDL-C levels, both of which are important components 
of METS-IR, potentially reducing its accuracy in predict-
ing diabetes. Lastly, age, as an independent risk factor 
for diabetes, may lead to diabetes development through 

pathways other than IR in some patients, which could 
lower the predictive accuracy of METS-IR for diabetes in 
this subset of patients. (3) For the differences observed in 
BMI subgroups we considered that they might be related 
to the following: As is well known, obesity is a disorder 
of energy balance leading to fat accumulation, primarily 
characterized by early abnormalities in glycolipid metab-
olism [42], and METS-IR contains a variety of indicators 
related to glycolipid metabolism, which better reflects 
the resulting IR. However, with prolonged exposure to 
obesity, insulin resistance is no longer induced solely 
through the glycolipid metabolism pathway; Studies have 
shown that a significant increase in metabolites, such as 
branched-chain amino acids, is an important factor con-
tributing to IR in obese compared to non-obese popula-
tions [43, 44]. Therefore, the accuracy of MEST-IR in 
estimating IR may decrease when exposed to obesity for 
a longer period of time, resulting in decreased accuracy 
in predicting new-onset diabetes in obese individuals in 
the medium and long term. In addition, over a longer 
follow-up period, a proportion of obese individuals may 
lose weight through various methods, potentially trans-
forming previously obese, high-risk individuals into lean, 
low-risk individuals. This could ultimately lead to mis-
classification of future diabetes by the baseline METS-IR, 
thereby decreasing predictive accuracy.

No previous studies have reported on the predictive 
threshold of METS-IR for predicting future diabetes. In 
the present study, we analyzed the trends over time in 
the predictive thresholds of METS-IR used to predict 
future diabetes. In terms of the magnitude of the predic-
tion thresholds, the thresholds of METS-IR for predict-
ing future diabetes were slightly higher in men than in 
women, and slightly higher in people with overweight/
obesity than in non-obese people, while the difference of 
the threshold values among people younger than 45 years 
old and those aged ≥ 45 years was not significant; in terms 
of predictive threshold fluctuation intervals, METS-IR 
prediction thresholds fluctuated relatively little for both 
men and women, for both the non-obese population and 
the population with overweight/obesity and for those 
aged ≥ 45 years.

The results of the current study may provide some ref-
erence for the prevention of diabetes in the population, 
clinical decision-making by physicians, and the develop-
ment of relevant government policies. Currently, diabetes 
prevention programs, as a fundamental policy for pro-
tecting public health, have obtained certain achievements 
in various countries [45–47]. However, it should be noted 
that the rate of mass participation in ongoing prevention 
programs is still low, and one of the possible reasons for 
this is lack of awareness of the risks and financial pres-
sures [45]. China is one of the countries with the largest 
number of diabetes patients worldwide, and over the past 
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few decades, the prevalence of diabetes has risen sharply 
[48, 49]. Similar to other countries, in response to the 
rapidly growing burden of diabetes, the Chinese govern-
ment has swiftly implemented a number of public health 
policies, including increasing government investment in 
primary healthcare, adjusting medical reimbursement 
policies, initiating the national family doctor program, 
and leading the establishment of “medical alliances” 
within counties [50–52]. Indeed, these favorable policy 
changes have been effectively improving access to bet-
ter medical care for the general public in recent years. At 
the same time, they have also contributed to an increased 
awareness among the general population regarding dia-
betes and other chronic diseases [48]. However, it is 
important to note that in some remote or rural areas, due 
to insufficient medical resources, a shortage of healthcare 
workers, as well as transportation, economic constraints 
and time conflicts, people still face challenges in terms of 
awareness, prevention, and treatment of diabetes [48, 53, 
54]. Therefore, identifying a precise, easily measurable, 
and durable IR surrogate parameter (METS-IR) that suits 
different populations becomes of great practical signifi-
cance. This can potentially reduce the economic burden 
on the population and decrease the healthcare expendi-
ture and resource allocation for diabetes prevention at 
the national level.

Strengths and limitations
The present study has several advantages: First, the par-
ticipants of the current study is from a medical screening 
center more in line with the general population setting 
relative to the diseased population and is more widely 
applicable. In addition, the current study has a large 
sample size and a long follow-up period, and the research 
evidence can be considered relatively reliable. Second, 
we included a time factor in the ROC analysis to assess 
METS-IR prediction of the onset of diabetes at different 
time points rather than at a fixed time in order to com-
pare longitudinally the temporal differences in METS-IR 
used to predict future diabetes.

There are, of course, some limitations to our study: 
First, the retrospective study design, based on single-
center data, may introduce some unavoidable selection 
bias, although on the other hand, single-center data 
are better at maintaining the homogeneity of the study 
population, which strengthens the validity of the results 
[55]. Second, due to the inherent limitations of the data 
source, we only assessed the predictive power of baseline 
METS-IR for future diabetes, whereas changes in various 
factors, including METS-IR, may alter the association of 
METS-IR with diabetes over a longer follow-up period 
[2, 56, 57], and such dynamic changes should be further 
evaluated in the future. Third, the diagnosis of diabe-
tes was determined based on FPG and HbA1c, and the 

absence of testing for 2-h postprandial glucose may have 
underestimated the prevalence of diabetes [58, 59], how-
ever, our results in data that may be lower than the actual 
prevalence population may better justify the robustness 
of the findings of this study. Fourth, the current assess-
ment of the predictive power of METS-IR was based on 
the general Japanese population, and further validation 
in other ethnic populations is needed in the future. Fifth, 
we excluded a portion of subjects (4.17%) due to missing 
data, which may have resulted in partial selection bias. 
Fifth, the current study is based on a secondary analy-
sis of public data. Since information on the prevalence 
of nutritional state was not provided in the original data 
set, the potential impact of nutritional state on the study 
results cannot be further assessed in the current research. 
Finally, the types of diabetes were not distinguished in 
the current study; however, according to a large number 
of published research evidence, the results of this study 
were more applicable to type 2 diabetes, because patients 
with type 2 diabetes account for more than 95% of all dia-
betic patients [60, 61].

Conclusions
In conclusion, our study showed that METS-IR was posi-
tively associated with diabetes risk in the general popula-
tion, and METS-IR was effective in predicting the future 
onset of diabetes in different populations at different 
times points, with a high predictive value especially for 
women and those aged less than 45 years. As a new risk 
screening and prediction tool, the METS-IR index can 
provide patients, physicians, and healthcare policymak-
ers with better-informed decisions.
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