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Abstract 

Background Medications targeting the glucagon-like peptide-1 (GLP-1) pathway are an important therapeutic class 
currently used for the treatment of Type 2 diabetes (T2D). However, there is not enough known about which sub-
groups of patients would receive the most benefit from these medications.

Objective The goal of this study was to develop a predictive model for patient responsiveness to medications, here 
collectively called GLP-1 M, that include GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP4) inhibitors (that 
normally degrade endogenously-produced GLP-1). Such a model could guide clinicians to consider certain patient 
characteristics when prescribing second line medications for T2D.

Methods We analyzed de-identified electronic health records of 7856 subjects with T2D treated with GLP-1 M drugs 
at Vanderbilt University Medical Center from 2003–2019. Using common clinical features (including commonly ordered 
lab tests, demographic information, other T2D medications, and diabetes-associated complications), we compared four 
different models: logistic regression, LightGBM, artificial neural network (ANN), and support vector classifier (SVC).

Results Our analysis revealed that the traditional logistic regression model outperforms the other machine learn-
ing models, with an area under the Receiver Operating Characteristic curve (auROC) of 0.77.Our model showed 
that higher pre-treatment HbA1C is a dominant feature for predicting better response to GLP-1 M, while features 
such as use of thiazolidinediones or sulfonylureas is correlated with poorer response to GLP-1 M, as assessed by low-
ering of hemoglobin A1C (HbA1C), a standard marker of glycated hemoglobin used for assessing glycemic control 
in individuals with diabetes. Among female subjects under 40 taking GLP-1 M, the simultaneous use of non-steroidal 
anti-inflammatory drugs (NSAIDs) was associated with a greater reduction in HbA1C (0.82 ± 1.72% vs 0.28 ± 1.70%, 
p = 0.008).

Conclusion These findings indicate a thorough analysis of real-world electronic health records could reveal new 
information to improve treatment decisions for the treatment of T2D. The predictive model developed in this study 
highlights the importance of considering individual patient characteristics and medication interactions when pre-
scribing GLP-1 M drugs.
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Key points 

1. Patient characteristics such as poorer blood glucose control, higher body mass, and shorter duration of diabetes 
predict better response to medications that target the GLP-1 pathway. 
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2. Simultaneous use of NSAIDs (for example ibuprofen) was associated with better responsiveness in women 
under 40.

3. Combining GLP-1 pathway medications with some other commonly used T2D medications (for example thiazoli-
dinediones or sulfonylureas) may not have an additional benefit. 

Introduction
Over 460 million people worldwide have diabetes [1]. In 
the United States, 10.5% of the population has diabetes, 
with about 90–95% of those having T2D [2]. Metformin 
is the preferred first-line treatment for.

T2D. However, due to the progressive nature of diabe-
tes, a second-line medication is commonly required at 
some point in the course of the disease to maintain glu-
cose homeostasis. When combined with metformin, on 
average all non-insulin medications lower hemoglobin 
A1C (HbA1C) by about 0.7–1.0% [3]. However, at the 
individual level, patients are known to respond differ-
ently to different medications [4]. Moreover, many fac-
tors contribute to diabetes etiology and responsiveness to 
medications, including patient characteristics and envi-
ronmental factors [5]. Unfortunately, there are few widely 
used biomarkers to aid in predicting individual patient 
responses [6]. Therefore, it is important to understand 
real-world patient responses to different combinations of 
medications to enhance personalized treatment for T2D. 

When cost is not an issue, the ADA recommends 
choosing a second-line medication from one of the fol-
lowing: dipeptidyl peptidase-4 inhibitors (DPP4i), 
glucagon-like peptide-1 receptor agonists (GLP-1-RA), 
or sodium/glucose co-transporter inhibitors (SGLT2i) 
[3]. Among these options, the incretin-based drugs 
GLP-1-RA and DPP4i (which we will collectively call 
GLP-1  M) are widely used. From 2013 to 2016, 23% 
of T2D patients in the US received DPP4i, and 6% of 
patients received GLP-1-RA [7]. A recent recommenda-
tion published by a group of diabetologists suggests that 
GLP-1-RA are currently under-prescribed [8], and thus, 
use of GLP-1  M is likely to continue to  increase in the 
future. GLP-1-RA mimic the actions of GLP-1, binding 
the GLP-1 receptor on the surface of β cells (and other 
cell types) and stimulating insulin secretion in the pres-
ence of elevated glucose. DPP4i block the activity of the 
enzyme that normally degrades endogenously produced 
GLP-1, thus, increasing its half-life in the circulation.

Importantly, despite their wide-spread usage, patient 
responses to GLP-1  M are heterogeneous. A study  that 
analyzed the effects of GLP-1-RA demonstrated that 
patients with baseline HbA1C of 7–8% had only a 
40%−60% probability of reducing HbA1C to < 7%, after 
12-months of GLP-1  M treatment [9]. In addition to 

differences in patient genetics and pathophysiology, 
drug-drug interactions could contribute to the heterog-
enous response to GLP-1 M. GLP-1 M act through a G 
protein coupled receptor (GPCR) that couples to Gαs. 
Islets express nearly 300 GPCRs [10] and GPCRs repre-
sent 35% of all current drug targets [11]. It is highly pos-
sible that activity of other GPCRs, and medications that 
affect their signaling, modulate GLP-1  M activity in β 
cells.

In this study, we aimed to develop a predictive model 
for patient responsiveness to GLP-1  M treatment. We 
analyzed the de-identified electronic health record (EHR) 
database entries from 2003–2019 at Vanderbilt Univer-
sity Medical Center (VUMC). Subject demographics 
(for example: age, sex, self-identified race), lab values 
(for example: HbA1c, BMI, liver enzymes), and some 
medication information (GLP-1  M, other drugs used 
to treat T2D, and NSAIDs) and presence or absence of 
diabetes-associated complications (for example: chronic 
kidney disease, cardiovascular disease) were extracted 
as prediction features. We compared logistic regression, 
LightGBM, artificial neural networks (ANNs), and sup-
port vector classifier (SVC), to identify the best model for 
predicting GLP-1  M responsiveness. We found logistic 
regression to be the best model. Pre-treatment HbA1C 
was the most important prediction factor for respon-
siveness. We also found associations between usage 
of other T2D medications or NSAIDs with GLP-1  M 
responsiveness.

Methods
Data source and ethics
This study was approved by the VUMC Institutional 
Review Board (IRB; #191,602) in Nashville, TN. All data 
are from the VUMC Synthetic Derivative (SD) database, 
a de-identified copy of the main hospital medical record 
database created for research purposes. The SD con-
tains over 3.2 million electronic records, with no defined 
exclusions. No HIPAA identifiers are available in the SD. 
Dates, such as “January 1, 2004” have been replaced with 
a randomly generated date, such as “February 3, 2003”. To 
maintain data integrity for each subject, a single random 
time interval was generated, and then used to shift all the 
dates for the same subject. In this way, all the time inter-
vals of subject clinic visits and treatments remain intact.
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Defining the subject cohort for analysis
In this study, ICD codes were used to identify the disease. 
The International Classification of Diseases (ICD) 9 and 
ICD10 codes used to define T2D are listed in Supplemen-
tal Table 1. All other ICD and CPT (Current Procedural 
Terminology) codes used to identify the other diseases 
and procedures are listed in Supplemental Table 2. To be 
included, each diagnosis required that the ICD code be 
present a minimum of twice in the subject’s record.

At the time of our analysis, there were 178,340 subjects 
in the SD with at least one ICD code for T2D (see Sup-
plemental Table 1). Figure 1A shows the strategy used for 

cohort selection. Subjects with T2D were identified using 
a published algorithm based on lab tests, prescriptions, 
and ICD codes [12]. This algorithm was previously vali-
dated across five institutions and demonstrated a posi-
tive predictive value (PPV) of 98%. We further restricted 
our analysis to subjects with T2D whose medical records 
also met the following requirements: 1. included at least 
two HbA1C measurements spanning at least one year; 
2. included at least one ICD code for T2D (Supplemen-
tal Table 1); and 3. the first T2D code occurred after age 
22  years. These criteria identified 33,428 subjects with 
T2D. Among these, one-third (11,604 subjects) had at 
least one record of GLP-1 M treatment. We considered a 
subject as having been treated with GLP-1 M only if there 
were at least two different medication entries referring to 
GLP-1 M treatment in the subject record, and GLP-1 M 
treatment occurred together with or subsequent to ICD 
codes for T2D (10,517 subjects were selected using these 
rules). Among these, 7,856 subjects had HbA1C values 
both before and after GLP-1  M treatment; this was the 
final number of subjects included in the analysis.

Table 1 Mean values ± SD of subjects’ continuous features 
considered

Mean values of subjects’ features used in the current anaylsis. Continuous 
features

Features Number of 
subjects

Mean value ± SD

HbA1c decrease 7856 0.50 ± 1.57

HbA1C before treatment 7856 8.01 ± 1.72

HDL 5635 43.35 ± 12.63

LDL 5279 105.33 ± 74.50

Triglycerides 5652 209.66 ± 162.08

Total cholesterol 5713 176.45 ± 45.89

SGOT (AST) 6480 29.24 ± 20.07

SGPT (ALT) 6546 32.80 ± 25.90

C -peptide 324 4.05 ± 3.22

Vitamin B12 1094 747.69 ± 926.74

Blood creatinine 7191 1.07 ± 0.70

Fasting blood glucose 1215 164.56 ± 62.13

Random glucose 5922 174.97 ± 72.13

Urine glucose 1745 30.97 ± 209.83

DBP 7769 76.12 ± 9.99

SBP 7769 132.90 ± 14.72

BMI 7705 35.45 ± 8.07

Blood albumin 6168 4.19 ± 0.36

Albumin /creatinine ratio 4019 72.63 ± 265.25

Urine albumin 4021 73.97 ± 256.83

Bicarbonate 399 25.20 ± 5.29

Total blood protein 3478 7.25 ± 0.52

Blood calcium 7087 9.53 ± 0.48

Blood chloride 7089 102.34 ± 3.36

Vitamin D 25OH 1215 29.93 ± 14.05

Whole blood lactate 265 1.50 ± 0.77

O2 saturation 256 97.68 ± 3.10

Blood potassium 7103 4.23 ± 0.42

Pulse 6895 80.03 ± 12.06

Respiration rate 3838 17.48 ± 3.43

Blood sodium 7097 138.54 ± 2.59

Age 7856 57.30 ± 11.90

T2D duration 7856 3.36 ± 3.95

Table 2 Mean values ± SD of subjects’ discrete features 
considered

Mean values of subjects’ features used in the current anaylsis. Binary/discrete 
features

Features Number of 
subjects (% of 
total)

Total subjects 7856

Female 3911(49.78%)

Not Hispanic 7635(97.19%)

Africa American 1386(17.64%)

White 6193(78.83%)

Asian 149(1.90%)

Other 147(1.87%)

Chronic kidney disease 1069(13.61%)

Cardiomyopathy 341(4.34%)

Heart failure 654(8.32%)

Hypertension 5566(70.85%)

Arthritis 1447(18.42%)

Gastric bypass 148(1.88%)

Bowel resection 82(1.04%)

Retinopathy 333(4.24%)

Insulin 2031(25.85%)

Metformin 4734(60.21%)

Sulfonylureas 3041(38.71%)

Thiazolidinediones 773(9.84%)

NSAIDs 3966(50.48%)

Painkiller 1542(19.63%)

Other T2D medication 488(6.21%)

Smoking 2888(36.76%)
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Each of the FDA-approved GLP-1Ms have been pre-
scribed at VUMC (Supplemental Table  3), although the 
prevalence for each varied. Among this class of drugs, 
albiglutide (US. trade name: Tanzeum) was found to be 
less effective than other drugs in this class and was with-
drawn from the market in 2018. We therefore excluded 
albiglutide use from our analysis. It should be noted that 
the first record of GLP-1 M usage in the VUMC database 
was in 2004 (Fig. 1B). However, the first GLP-1 M, Byet-
taTM (Exenatide), was actually approved in 2005. The 
discrepancy in the dates is due to the fact that for each 
subject, all the dates in the VUMC SD database have been 
randomly shifted backward by 0–364 days. All the dates 
in our study therefore refer to these “synthetic dates”. The 
prescribing of GLP-1 M In VUMC increased consistently 
until 2017 (Fig. 1B), and then decreased. Multiple factors 
may contribute to the variation of the usage of the drug. 
The underlying reason for this pattern of the drug appli-
cation is beyond the scope of the current paper.

Data pre‑processing
For each type of lab value, the data was first converted 
to the same unit. A range was then used to identify and 
eliminate likely incorrectly entered values that fell outside 
known published value ranges for that particular test. For 
blood pressure values, when the diastolic pressure was 
normal, but systolic pressure was below 20, we multiplied 
the systolic pressure with a correction factor of 10. We 
developed this correction since a systolic pressure below 
20 mm Hg is not compatible with life, and the presence 
of a normal diastolic pressure value in the record further 
supports that the extremely low systolic value is an error. 
Such an error is most likely due to the omission of a trail-
ing zero. We did not perform corrections for other val-
ues, as it is difficult to distinguish between genuine data 
points and errors.

If one subject had multiple records for the same lab 
test, we determined the median value, as it is robust to 
the outlier. For the other categorical features, we used 
binary encoding. In our dataset, race was not mutually 
exclusive, e.g., a subject can have the value 1 for being 
both White and Asian. Race is self-reported by subjects 
and thus, if a subject listed two races on their intake 
survey, we could not exclude one or the other, since all 

subjects are deidentified. Only a very small percentage 
of our subjects have a self-reported mixed racial back-
ground and reflects real-world diversity. Excluding them 
from the study could lead to racial bias, so we retained 
them in our dataset.

For HbA1C, the SD contains HbA1C measurements 
obtained via the VUMC clinical laboratory as well as 
point of care (POC) testing. There is only an average of 
0.2% difference between the average of the two values 
(Supplemental Fig.  1A). Moreover, no significant differ-
ence in pattern was observed when plotting these two 
values together (Supplemental Fig.  1B). Thus, we com-
bined the HbA1C from these two different sources with-
out any adjustment.

As our data span over 17 years, for each feature, after 
data processing, we examined the data range and dis-
tribution in each year, to ensure that the data could be 
combined. We did not identify any difference in data dis-
tribution, so no further adjustment was done. With the 
cleaned dataset, for each lab test, we used the median 
value within 12  months prior to initiation of GLP1-M 
treatment as the final value. For each diagnosis and sur-
gery, we only considered it in our analysis if it occurred 
before initiation of GLP-1  M. We required any addi-
tional medications to be administered within ± 3 days of 
GLP-1 M treatment to be considered simultaneous.

Response label creation
The binary label for treatment responsiveness was cre-
ated by the following method: the median HbA1C level 
within 12 months before GLP-1 M treatment was used as 
the pretreatment HbA1C. The median HbA1C recorded 
12 months after treatment was initiated was used as the 
after-treatment HbA1C. If the difference between the 
two values was more than 0.5%, we considered the sub-
ject to have responded to the treatment (score of 1). If 
not, the subject was designated as not responding (score 
of 0).

Data analysis and model development
Python libraries such as Pandas, Numpy, Scipy, Sklearn, 
LightGBM, Keras, and Seaborn were used for data pro-
cess and modeling. For tests with multiple entries, if 
the number of tests was relatively small, we used the 

Fig. 1 Cohort inclusion and exclusion strategy and response to GLP-1 M. A. Overview of the cohort building procedure. B. The number of subjects 
treated with GLP-1 M per year during the defined period (see Methods) in the VUMC Synthetic Derivative database. The years indicated are 
synthetic time (see Methods). C. Subject responsiveness to GLP-1 M is heterogeneous. Each ‘ + ’ indicates one subject. The blue line indicates 
an unchanged HbA1C level after GLP-1 M treatment. The blue shading contains subjects whose HbA1C levels were changed by less than ± 0.5% 
in the treatment period. The green shading contains subjects whose HbA1C decreased by more than 0.5% in the period after treatment. White area 
contains subjects whose HbA1C increased by 0.5% or more in the time period after treatment

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Bonferroni Correction and present the adjusted p-value. 
If the number of tests was large, we computed the False 
Discovery Rate (FDR) to adjust for the multiple tests.

The percentage of missing values is  shown in Sup-
plemental Table  4. To build the model, only features 
with less than 30% of subject data missing were used. 

For logistic regression, ANN, and SVC, we applied the 
K-Nearest Neighbor (KNN) algorithm to fill in any miss-
ing values. Briefly, the missing value for each subject was 
replaced with the average value from the five most simi-
lar subjects calculated using Euclidian distance. We also 
used L1 regularization to generate a model with the least 

Table 3 Differences in feature values between GLP-1 M responders and non-responders

Comparison of features of GLP-1M responders versus non-responders. Significant values are shown in bold in the right hand column

Features Number of 
responders

Responder value 
mean ± SD

Number of non‑
responders

Non‑responder value
mean ± SD

False 
Discovery 
Rate (FDR)

HbA1C before treatment 3447 8.87 ± 1.84 4409 7.34 ± 1.27  < 1.0E‑100
HDL cholesterol 2467 42.52 ± 12.19 3168 44.00 ± 12.92 1.04E‑05
LDL cholesterol 2282 108.66

± 78.45
2997 102.79

± 71.26
3.33E‑04

Triglycerides 2477 222.99
± 176.99

3175 199.27
± 148.61

9.54E‑08

Total cholesterol 2503 179.62
± 47.28

3210 173.98
± 44.62

9.08E‑06

SGOT (AST) 2838 30.56 ± 22.40 3642 28.21 ± 17.99 1.71E‑06
SGPT (ALT) 2872 35.08 ± 26.65 3674 31.01 ± 25.16 1.81E‑18
C-peptide 193 4.03 ± 3.25 131 4.07 ± 3.19 4.52E-01

Vitamin B12 455 792.49
± 998.19

639 715.79
± 871.71

5.85E-02

Blood creatinine 3169 1.03 ± 0.59 4022 1.10 ± 0.77 1.87E‑05
Fasting blood glucose 512 177.76

± 69.58
703 154.94

± 54.14
4.89E‑09

Random glucose 2618 197.21
± 80.67

3304 157.34
± 58.88

5.11E‑105

Urine glucose 708 64.80
± 251.71

1037 7.87 ± 171.95 2.52E‑09

DBP 3418 76.79 ± 9.96 4351 75.60 ± 9.99 1.71E‑06
SBP 3418 133.42

± 14.59
4351 132.48

± 14.82
4.06E‑03

BMI 3390 35.77 ± 7.95 4315 35.19 ± 8.16 1.14E‑04
Blood albumin 2706 4.19 ± 0.36 3462 4.18 ± 0.36 3.45E-01

Albumin creatinine ratio 1804 75.81
± 257.71

2215 70.05
± 271.26

6.24E‑08

Urine albumin 1804 80.73
± 263.27

2217 68.48
± 251.40

7.41E‑08

Bicarbonate 157 25.10 ± 5.33 242 25.27 ± 5.28 3.44E-01

Total blood protein 1470 7.26 ± 0.51 2008 7.24 ± 0.51 6.58E-02

Blood calcium 3123 9.54 ± 0.47 3964 9.51 ± 0.48 5.63E‑03
Blood chloride 3123 101.82 ± 3.37 3966 102.74 ± 3.29 1.21E‑29
Vitamin D 25OH 498 29.03 ± 13.23 717 30.56 ± 14.56 1.04E-01

Whole blood lactate 94 1.51 ± 0.70 171 1.50 ± 0.81 2.91E-01

O2 saturation 101 97.39 ± 3.76 155 97.87 ± 2.58 3.45E-01

Blood potassium 3131 4.23 ± 0.41 3972 4.24 ± 0.42 1.60E-01

Pulse 2973 81.07 ± 12.26 3922 79.25 ± 11.85 1.14E‑08
Respiration rate 1640 17.49 ± 3.15 2198 17.47 ± 3.62 9.85E-02

Blood sodium 3127 138.13 ± 2.64 3970 138.87 ± 2.50 4.29E‑33
Age 3447 56.61 ± 11.68 4409 57.83 ± 12.04 1.71E‑06
T2D duration 3447 3.37 ± 3.98 4409 3.36 ± 3.93 3.31E-01
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Table 4 Decrease in HbA1c in response to GLP-1 M based on subject features

Comparison of features of GLP-1M responders versus non-responders. Significant values are shown in bold in the right hand column

Features Number of subjects Decrease in HbA1c
(mean ± SD)

False 
Discovery 
Rate (FDR)

Sex Female 3911 0.45 ± 1.48 3.09E‑02
Male 3945 0.55 ± 1.64

Hispanic ethnicity No 7635 0.50 ± 1.56 2.39E-01

Yes 221 0.46 ± 1.58

Race Africa American 1386 0.55 ± 1.83 8.91E-02

Non-African American 6470 0.48 ± 1.50

White 6193 0.49 ± 1.51 1.56E-01

Non-White 1663 0.53 ± 1.75

Asian 149 0.19 ± 1.08 1.06E‑02
Non-Asian 7707 0.50 ± 1.58

Other 147 0.61 ± 1.34 9.96E-02

Non-Other 7709 0.49 ± 1.57

Chronic kidney disease Yes 1069 0.32 ± 1.50 6.65E‑04
No 6787 0.53 ± 1.58

Cardiomyopathy Yes 341 0.32 ± 1.44 3.19E‑02
No 7515 0.51 ± 1.57

Heart failure Yes 654 0.33 ± 1.51 4.58E‑03
No 7202 0.51 ± 1.57

Hypertension Yes 5566 0.51 ± 1.51 3.59E‑03
No 2290 0.47 ± 1.69

Arthritis Yes 1447 0.45 ± 1.36 2.30E-01

No 6409 0.51 ± 1.61

Gastric bypass Yes 148 0.64 ± 1.49 5.61E-02

No 7708 0.49 ± 1.57

Bowel resection Yes 82 0.25 ± 1.55 2.23E-01

No 7774 0.50 ± 1.57

Retinopathy Yes 333 0.28 ± 1.49 3.96E‑02
No 7523 0.51 ± 1.57

Insulin Yes 2031 0.66 ± 1.81  < 1.0E‑100
No 5825 0.44 ± 1.47

Metformin Yes 4734 0.54 ± 1.59 1.78E‑08
No 3122 0.43 ± 1.52

Sulfonylureas Yes 3041 0.49 ± 1.58 5.16E‑03
No 4815 0.50 ± 1.56

Thiazolidinediones Yes 773 0.37 ± 1.53 3.29E‑01
No 7083 0.51 ± 1.57

NSAIDs Yes 3966 0.46 ± 1.53 5.16E‑03
No 3890 0.54 ± 1.60

Painkiller Yes 1542 0.43 ± 1.56 6.76E‑03
No 6314 0.51 ± 1.57

Other T2D Medication Yes 488 0.49 ± 1.38 6.08E‑02
No 7368 0.50 ± 1.58

Smoking Yes 2888 0.53 ± 1.59 2.82E‑01
No 4968 0.48 ± 1.55
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number of features. Since LightGBM is a gradient boost 
tree model that can model complex decision boundaries, 
it has no linear assumptions and can tolerate missing 
values. Thus, when using LightGBM, any missing values 
were not filled.

The data were divided into a training set and test-
ing set (Supplemental Table  5). Eighty-five percent of 
the data was used for model training and validation; 
15% of the data was used for final testing. The data 

distribution was similar between both sets (Fig. 2) and 
we ensured that the distribution of treatment years was 
similar between training and testing data sets (Fig. 2A). 
The treatment time was not used for the training set 
to avoid data leakage. Grid search and five-fold cross-
validation were then used to search for hyperparam-
eters. During grid search, 90% of the training data was 
used for the model training set and 10% was used for 
validation.

Table 5 Differences in responder vs non-responder subjects (binary variables)

Comparison of features of GLP-1M responders versus non-responders. Significant values are shown in bold in the right hand column

Features Number of responders (% of total) False 
Discovery 
Rate (FDR)

Sex Female 1674(42.8%) 9.70E-02

Male 1773(44.9%)

Hispanic ethnicity No 3349(43.8%) 9.42E-01

Yes 98(44.3%)

Race Africa American 648(46.8%) 3.41E‑02
Non-Africa American 2799(43.3%)

White 2688(43.4%) 1.60E-01

Non-White 759(45.6%)

Asian 46(30.8%) 4.02E‑03
Non-Asian 3401(44.1%)

Other 74(50.3%) 1.88E-01

Non-Other 3373(43.7%)

Chronic kidney disease Yes 425(39.7%) 8.05E‑03
No 3022(44.5%)

Cardiomyopathy Yes 137(40.1%) 2.35E-01

No 3310(44.0%)

Heart failure Yes 251(38.3%) 7.58E‑03
No 3196(44.3%)

Hypertension Yes 2494(44.8%) 1.99E‑02
No 953(41.6%)

Arthritis Yes 609(42.1%) 1.91E-01

No 2838(44.3%)

Gastric bypass Yes 69(46.6%) 5.83E-01

No 3378(43.8%)

Bowel resection Yes 33(40.2%) 6.01E-01

No 3414(43.9%)

Retinopathy Yes 137(41.1%) 3.71E-01

No 3310(44.0%)

insulin Yes 1017(50.1%) 6.04E‑10
No 2430(41.7%)

Metformin Yes 2130(44.5%) 2.80E‑02
No 1317(42.2%)

Sulfonylureas Yes 1359(44.7%) 3.29E-01

No 2088(43.36%)

Thiazolidinediones Yes 289(37.3%) 3.81E‑04
No 3158(44.6%)
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Results
Responses to GLP‑1 M are heterogeneous
A meaningful decrease in HbA1C level is the most com-
monly used clinical measure for evaluating the effective-
ness of any diabetes treatment. The median HbA1C level 
of all T2D subjects treated at VUMC was maintained at 
approximately 7.0 in the past 17  years, suggesting that 
overall, diabetes is well-controlled in this cohort.

A decrease in HbA1C of less than 0.5% has not been 
shown to correlate with improvements in the inci-
dence of diabetic complications [13, 14]. Therefore, in 
this study, a subject was considered as a responder to 
GLP-1 M only when the HbA1C decreased by more than 
0.5% after the treatment. We considered a subject to have 
a positive response to GLP-1  M if the median HbA1C 
within 12 months after the treatment decreased by more 
than 0.5% from the median HbA1C within 12  months 
before the treatment [13, 14]. Surprisingly, although at 
the population level HbA1C decreased by 0.50 ± 1.57% 
after GLP-1 M treatment (Table 1), a decrease in HbA1C 

of more than 0.5% was only observed in 43.9% of subjects 
(Fig.  1C, green area). In 36.7% of subjects, the HbA1C 
did not change by more than 0.5% in either direction, 
while in 17.7% of subjects, the HbA1C increased by more 
than 0.5% after GLP-1 M treatment (Fig. 1C, white area), 
potentially indicating a lack of response to drug treat-
ment. It is important to note that GLP-1 M includes both 
DPP4i and GLP-1-RA, which have different mechanisms 
of action. DPP4i relies on endogenous GLP-1 to be effec-
tive, while GLP-1-RA does not. To investigate whether 
responses to these two medication categories differ, we 
examined patient responses to each medication sepa-
rately (Supplemental Fig. 1C, D) and found a heterogene-
ous response to each drug, with a pattern similar to the 
analysis of the two treatments combined. As a result, we 
combined the two types of medications for the rest of the 
paper to increase the sample size.

Next to build a model predicting GLP-1  M treatment 
responsiveness, we retrieved demographic and clinical 
information (here, called features) for each subject. Since 

Fig. 2 Histograms of training and testing data. Training data (blue) and testing data (orange) are similar for (A) treatment year and (B) HbA1C 
before treatment. (C) Cohort BMI. (D) Cohort age
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the data were collected as part of clinical care, features 
available for selection were limited to lab tests requested 
by the treating clinician. To have sufficient statistical 
power, we selected only features that were present in 
more than 100 subjects. Our final dataset for explora-
tory analysis, contained 34 continuous features (Table 1), 
including most of the commonly ordered lab tests, and 
19 discrete features (Table  2), including demographic 
information, other T2D medications, and diabetes com-
plications. The specific drug names can be found in Sup-
plemental Table 3.

Univariate analysis of features associated with GLP‑1 M 
treatment effectiveness
Univariate analysis was performed to explore features 
highly associated with GLP-1 M responsiveness without 
the complication of missing data. The results from the 
univariate analysis also aid in applying the model to other 
datasets in the future. This analysis revealed that pre-
treatment HbA1C, fasting blood glucose, random blood 
glucose, and urine glucose were significantly higher in the 
responsive group (Table 3, Fig. 3A). Additionally, higher 
levels of total cholesterol, LDL, triglycerides, and lower 
HDL were observed in the responsive group, suggesting 
greater insulin resistance [15]. Elevated levels of serum 
glutamic pyruvic transaminase (SGPT, also as known as 
ALT), serum glutamic oxaloacetic transaminase (SGOT, 
also known as AST), urine albumin, and albumin/creati-
nine ratio were also noted, indicating potentially poorer 
kidney and liver function.

We also examined the association of other T2D medi-
cations with GLP-1  M response. Exogenous insulin 
administration correlated with enhanced responsive-
ness (Tables  4 and 5), with a significant decrease in 
HbA1C of 0.66 ± 1.81%. Combining GLP-1 M with met-
formin improved the response compared to non-insulin 
drugs (Tables  4 and 5). Conversely, the combination of 
GLP-1  M with thiazolidinediones was associated with 
a decreased response (Table  5), while sulfonylurea use 
showed no significant effect.

The ADA recommends using GLP-1  M for its addi-
tional cardiovascular and kidney benefits. Subjects with 
chronic kidney disease (CKD) had a reduced response 
to GLP-1 M treatment compared to those without CKD 
(Tables  4 and 5). Heart failure also correlated with a 
decreased response, whereas hypertension was associ-
ated with a slightly better response (Table 4). No signifi-
cant differences were observed in subjects with weight 
loss surgeries, arthritis, or retinopathy.

In examining the potential effects of race on GLP-1 M 
responsiveness, subjects self-identifying as Asian showed 
a lower average reduction in HbA1C compared to non-
Asian subjects, indicating potentially less benefit from 

GLP-1 M treatment for glucose control in Asian popula-
tions (Tables 4 and 5, Fig. 3C).

Association of sex, age, and NSAIDs with responsiveness 
to GLP1‑M treatment
NSAIDs, which are among the most commonly used 
medications for treating various medical conditions, have 
a complex relationship with glucose metabolism. While 
aspirin and sodium salicylate were historically used to 
treat diabetes and cardiovascular disease [16, 17], some 
newer NSAIDs have been associated with increased 
cardiometabolic risk. Some of the beneficial effects of 
first-generation COX inhibitors may have been due to 
decreased levels of prostaglandin  E2  (PGE2), which acts 
through GPCRs, some of which are expressed in β cells 
along with the GLP-1R [18] and could modulate GLP-1R 
effects. Recent studies suggest that some NSAIDs directly 
inhibit DPP4, thus elevating endogenous GLP-1 [19]. 
However, our study found that subjects taking NSAIDs 
(a list of these medications is found in Supplemen-
tal Table  3) simultaneously with GLP-1  M collectively 
showed an overall weaker response to GLP-1  M treat-
ment (Table  4, FDR = 5.16E-03). A similar pattern was 
observed when GLP-1  M was used together with other 
pain relievers such as acetaminophen and hydrocodone 
(Table  4, FDR = 6.76E-03). It was reported that NSAID 
usage varies with both sex and age [20, 21], and since sex 
hormones can affect various physiological responses, we 
divided the subjects into eight groups based on sex, age, 
and NSAID usage. Overall, our data suggest that females 
show reduced glucose-lowering benefit from GLP1-M 
treatment Table  4). However, as shown in Fig.  3D and 
Table  6, among females less than 40  years old, NSAID 
usage was associated with a greater reduction in HbA1C 
in response to GLP-1  M (0.82 ± 1.72) than no NSAID 
usage (0.28 ± 1.70, Bonferroni adjusted p = 8E-03). Inter-
estingly, the relationship was reversed in females over 
age 40 (0.52 ± 1.44 without NSAIDs vs 0.36 ± 1.45 with 
NSAIDs, Bonferroni adjusted p = 2E-03). We did not 
observe any age-associated differences in GLP-1  M 
responsiveness in male subjects. There is also no signifi-
cant difference in the percentage of subjects responding 
to GLP-1 M with or without NSAID usage (Fig. 3D). To 
understand whether there is a difference in NSAID usage 
between sexes, we compared the first records of NSAID 
usage in VUMC SD (Fig. 3E). We did not identify any sig-
nificant difference in the distribution of NSAID usage. 
Given the widespread use of NSAIDs in clinical practice, 
our findings highlight the need for further investigation 
into the potential interactions between NSAIDs and 
GLP-1 M treatment.
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Fig. 3 Distribution of responders and non-responders for several key features. A. Histogram showing range of HbA1C values of the study 
cohort pre-GLP-1 M treatment. Blue shading: HbA1C values for subjects that did not respond to GLP-1 M treatment. Orange shading: HbA1C 
values for subjects that responded positively to GLP-1 M treatment. Compared to the non-responder group, the curve for the responder group 
is right-shifted (toward higher pretreatment HbA1C values). B. Histogram showing BMI values for the study cohort pre-GLP-1 M treatment. Blue 
shading: BMI values for subjects that did not respond to GLP-1 M treatment. Orange shading: BMI values for subjects that responded positively 
to GLP-1 M treatment. Compared to the non-responder group, the curve for the responder group has fewer people with BMI lower than 40. C. 
Mosaic plot showing patient response to GLP-1 M treatment stratified by race. The numbers in the plots indicate the number of the subjects in each 
group. The top tiles indicate the number of the responders. The bottom tiles indicate the number of non-responders. Tiles from left to right are 
White, African American and Asian, respectively. D. Mosaic plots showing patient response stratified by NSAIDs usage, sex and age. The numbers 
in the plots indicate the number of the subjects in each group. Left plot: female subjects; Right plot: male subjects. In both plots, purple tiles 
indicate subjects treated with both GLP-1 M and NSAIDs, pink tiles indicate subject only treated with GLP-1 M. Top tiles: subjects who started 
GLP-1 M before or equal to 40 years old. Bottom tiles: subjects who started GLP-1 M after 40. E. Violin plots showing subjects age of the first EHR 
records of NSAIDs stratified by year and sex. Blue line: median age for Female, Red line, median age for Male
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Predictive model for GLP‑1 M responsiveness
While univariate analysis offers valuable insights, our pri-
mary goal was to develop a predictive model for patient 
responsiveness to GLP-1  M treatment, irrespective of 
causal relationships. We next built a machine learning 
model to enhance prediction and further selected from 
the aforementioned features with less than 30% miss-
ing datapoints to build a prediction model for GLP-1 M 
responsiveness. Machine learning models with high 
complexity face the difficulty of generalizability. Thus, 
we used one of the simplest available models, logistic 
regression, as the benchmark. Our exploratory analysis 
revealed both positive and negative correlations between 
particular features (Supplemental Fig.  2). For example, 
chronic kidney disease was strongly correlated with heart 
failure, while it was negatively correlated with metformin 
usage. Random blood glucose was positively correlated 
with urine glucose, but negatively correlated with blood 
sodium. Therefore, to reduce model complexity further, 
we applied L1 regulation (also called Lasso). With L1 reg-
ulation, when two features are highly correlated, the coef-
ficient for one of the features will be set to zero and is not 
considered in the final model.

We compared logistic regression with three differ-
ent machine learning models using distinct algorithms: 
LightGBM, SVC, and ANNs. LightGBM is a gradient 
boosting framework using tree-based learning algo-
rithms. SVC is used for classification tasks by finding the 
optimal hyperplane that maximizes the margin between 
different classes. ANNs consist of interconnected nodes 
(neurons) organized in layers: input, hidden, and output 
layers, capable of capturing complex patterns in data. 
The hyperparameters searched for all models are shown 
in Table  7. Model performance was assessed using a 
confusion matrix (Fig.  4A1, 4A2, Supplemental Fig.  3) 
and auROC (area under the Receiver Operating Charac-
teristic curve; Fig.  4A3, Supplemental Fig.  3). As shown 

in Fig.  4A, all models performed similarly except SVC. 
Logistic regression achieved an auROC of 0.77 (Fig. 4A3), 
while LightGBM and ANN both achieved an auROC of 
0.76 (Fig. 4A3, Supplemental Fig. 3). The performance of 
SVC was the worst among the models.

Since none of the other models tested outperformed 
logistic regression, we used LightGBM to explore 
whether increasing the sample size would further 
improve either model. As indicated in the learning curves 
for logistic regression (Fig.  4B), the training and valida-
tion sets would likely converge at around 0.78 if more 
samples were added. For LightGBM (Fig. 4B2), the learn-
ing curve has already reached a plateau, suggesting that 
increasing the sample size would not improve model 
performance.

As logistic regression proved to be the best model, the 
model coefficients are plotted in Fig. 4C. The full set of 
the coefficients and the odds ratio are in the Supplemen-
tal Table 6. Pre-treatment HbA1C, subject age, ALT, AST, 
BMI, metformin use, and having hypertension each posi-
tively contribute to predicted GLP-1  M responsiveness. 
These results are consistent with the univariant analysis 
results (Table 2). Interestingly, the model did not identify 
insulin usage as being predictive of treatment respon-
siveness. The use of insulin in subjects might be associ-
ated with features such as age and HbA1C level, so the 
coefficient for insulin was set to zero when L1 regulation 
was applied. Sulfonylurea or thiazolidinedione use, being 
of Asian descent, having heart failure, retinopathy, high 
blood chloride, and long T2D duration all negatively con-
tributed to the predicted value of GLP-1 M effectiveness.

Discussion
In this study, we used a de-identified patient EHR data-
base to analyze the real-world response of T2D patients 
to GLP-1  M treatment and to predict which patients 
might benefit most from this class of T2D medications. 

Table 6 Response to GLP-1 M based on the combination of sex, age and NSAIDs

Comparison of features of GLP-1M responders versus non-responders. Significant values are shown in bold in the right hand column

Age Sex NSAID usage Number of subjects Decrease in HbA1c
(mean ± SD)

Bonferroni‑
Adjusted 
p‑Value

Age < = 40 Male No 183 0.78 ± 2.17 5.12E-1

Yes 73 0.56 ± 2.42

Female No 301 0.28 ± 1.70 8E00‑3
Yes 119 0.82 ± 1.72

Age > 40 Male No 1639 0.58 ± 1.66 2.42E-1

Yes 2050 0.50 ± 1.54

Female No 1767 0.52 ± 1.43 2.00E‑3
Yes 1724 0.36 ± 1.45
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Taken together, our model predicts that the best candi-
dates for adding GLP-1 M as a second line T2D medica-
tion are: older age, non-Asian subjects, with short T2D 
duration that have elevated HbA1C, high BMI, hyper-
tension, and no heart failure or retinopathy. A limitation 
of the current study is that it was performed using data 
from a single academic medical center with limited diver-
sity in terms of patient population. The current results 
should be confirmed using datasets from different sub-
ject cohorts.

Our goal in the current study was to develop a pre-
dictive model that could guide the use of GLP-1  M 
medications for the treatment of T2D in the real world. 
To increase our power, the current study did not sepa-
rately consider effects on GLP-1RA or DDP4i respon-
siveness. We specifically used common clinical factors 
that are available within current clinical practice to 
build our model, making it more feasible for use in real-
world settings. As a starting point, we used the HbA1C 
12 months before the decision point, which is typically 
available in clinical practice. Our model reveals clini-
cal features that should be considered when deciding to 
initiate GLP-1  M combined therapy for the treatment 
of T2D, including age, race, T2D duration, HbA1C lev-
els, BMI, hypertension, and the presence or absence 
of heart failure or retinopathy. By incorporating 

these factors into our model, we aim to provide clini-
cians with a more accurate and personalized tool for 
predicting which patients might benefit most from 
GLP-1 M treatment. Our model reveals clinical features 
that should be considered when deciding to initiate 
GLP-1 M combined therapy for the treatment of T2D. 
We want to emphasize that although these factors can 
be used to guide clinical decisions, they may not have a 
causal relationship with the response to GLP-1 M.

Some factors identified in this study are consist-
ent with prior existing knowledge. Previous research 
showed that patients with shorter duration of T2D are 
more likely to benefit from GLP-1  M treatment [22]. 
Interestingly, univariate analysis did not identify dif-
ferences in T2D duration between responder and non-
responders (Table 3). However, in the final model, when 
considering all other factors, T2D duration was found to 
be negatively associated with GLP-1  M responsiveness 
(Fig.  4C), which is consistent with the previous study. 
The finding that hypertension and higher BMI positively 
contribute to predicting GLP-1  M responsiveness is 
consistent with the current approach of using GLP-1 M 
for protection of the cardiovascular system and pro-
moting weight loss [3]. Consistent with these reports, 
recent research from one of our groups (Q.S.W.) further 
demonstrated that drugs targeting genes involved in the 

Table 7 Model hyperparameters and evaluation results

Model performance. Model hyperparameters and the final score. For each model, all combinations of the listed hyperparameters were tested using grid search. 
Hyperparameter names presented here follow the model parameter in the Sklearn (logistic regression) and LightGBM package

Model Hyperparameter name Hyperparameter values explored Best
value identified

Validation score (AUC) Testing
score (AUC)

Logistic regression Fit intercept True, False False 0.79 ± 0.075 0.77

C 0.0001, 0.001, 0.01, 0.002, 0.02 0.02

LightGBM Max depth −1, 8, 32, 64 −1 0.79 ± 0.012 0.76

Min data in leaf 50, 100, 200, 300, 400 400

Learning rate 0.01, 0.001, 0.1 0.01

Reg lambda 0.1, 0.5, 1, 10 0.5

Max bin 128, 256, 512, 1024 512

N estimators 200, 400, 800 400

Feature fraction 0.2,0.4, 0.8, 1.0 1.0

Num leaves 15, 31, 64,128,256 15

Reg alpha 0.5, 1, 10 1

Artificial Neural Network
(ANN)

Hidden layer size (100,100,100), (50,100,50), (100,1) (100,1) 0.67 ± 0.006 0.76

Activation relu, tanh, logistic logistic

Alpha 0.0001, 0.05 0.05

Learning rate constant,adaptive, invscaling adaptive

Solver adam adam

Batch size 16,32,64,128 64

Support Vector Classifier
(SVC)

Kernel Linear, poly, rbf, sigmoid Sigmoid 0.269 ± 0.006 0.56

Gamma 0.001, 0.0001, 0.1, 0.2, 0.005 0.1

Shrinking False, True False
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regulation of systolic blood pressure might be repur-
posed to treat diabetes [23].

The finding that high ALT and AST also predict a good 
response to GLP-1  M was not anticipated based on the 
literature, and seems counterintuitive. It is unlikely that 

impaired liver function enhances GLP-1  M effective-
ness. Elevated ALT and AST might simply reflect fatty 
liver disease due to insulin resistance and worse sever-
ity of the underlying metabolic and physiological con-
dition. In support of this hypothesis, we did identify a 

Fig. 4 Assessment of model performance. A. Confusion matrices for: (A1) logistic regression and (A2) LightGBM. A3. ROC (Receiver Operating 
Characteristic) curve for logistic regression (green) and LightGBM (orange). The blue dotted line indicates where the false positive rate equals 
the true positive rate. B. Model learning curves for (B1) Logistic regression and (B2) LightGBM. Area under the ROC (auROC) curve was used 
to evaluate the model performance and is shown in the y-axis. C. Logisitic regression coefficients were plotted to show feature importance
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weak association between the level of C-peptide and 
the level of ALT (Pearson’s correlation coefficient = 0.30) 
and AST (Pearson’s correlation coefficient = 0.29). The 
popularity of GLP-1  M is partly due to its cardiovascu-
lar, kidney, and weight loss benefits. Our results suggest 
that although GLP-1  M have demonstrable protective 
effects on cardiovascular and kidney disease, for people 
who already have CKD and heart failure, such protection 
might come together with reduced benefit on lowering 
of blood glucose. On the other hand, for patients with 
hypertension, GLP-1 M have an enhanced blood glucose 
lowering effect.

The observation that differences in sex and age resulted 
in some subjects having better responsiveness to com-
bined treatment with NSAIDs and GLP-1  M was also 
unexpected. One caveat of these studies is that many 
NSAIDs do not require a prescription and are one of 
the most commonly used over the counter medications. 
The current dataset is from the hospital records, which 
include self-reported information. Thus, we cannot 
rule out the possibility that some NSAID usage was not 
captured in the EHR/SD. Most likely, subjects listed as 
receiving NSAID treatment were experiencing chronic 
pain or inflammation. Subjects without NSAID treat-
ment listing in the SD might include subjects that used 
NSAIDs only for a short time and did not inform their 
attending physician. Further research is required to vali-
date the effects of NSAID usage and to understand the 
underlying mechanisms behind the interaction between 
NSAIDs and GLP-1  M. Several features, including 
NSAIDs and insulin usage, were ultimately not included 
in the final models. This was due to our decision to apply 
L1 regulation in order to obtain the simplest model for 
the purpose of helping clinicians determine which of 
their patients with T2D would most likely benefit from 
adding GLP-1 M as the second-line medication.

Our current analysis cannot exclude the possibility 
that the patient criteria for considering GLP-1  M treat-
ment are generalizable for other T2D medications since 
we only considered GLP-1 M and did not compare it with 
responsiveness to other treatments. Future studies apply-
ing multi-label classification to a larger data set can help 
address this question. However, it has traditionally been 
believed that T2D drugs are more efficacious for subjects 
with higher HbA1C, partly due to the relief of the stress 
from glucotoxicity [24], and that is what we observed as 
well. In contrast, higher HbA1C has recently been linked 
to poor metformin responsiveness [25]. In our study, 
pretreatment HbA1C level was the dominant factor that 
affected GLP-1  M treatment outcome in the current 
analysis. Thus, for patients who have higher HbA1c at the 
time of diagnosis, it might be beneficial to use GLP1-M 
earlier in their course of treatment.

Our model also suggests that GLP-1  M treatment 
combined with sulfonylureas or thiazolidinediones 
has no added benefit and may actually decrease treat-
ment effectiveness. In fact, both sulfonylureas and thia-
zolidinediones are negative predictors for GLP-1  M 
responsiveness. These associations are independent of 
the pre-treatment HbA1C for two reasons: 1. HbA1C is 
included in the model; 2. we did not observe any obvi-
ous differences in the pre-treatment HbA1C between 
subjects taking sulfonylureas and thiazolidinediones 
and those who were not taking these medications Pre-
vious studies have reported that combining sulfonylu-
reas or thiazolidinediones with GLP-1 M is an effective 
treatment for T2D [26–29]. However, those studies did 
not compare the effectiveness of this drug combination 
with the use of GLP-1 M alone. For example, in a pre-
vious study, the effectiveness of dulaglutide combined 
with pioglitazone was compared with that of pioglita-
zone and metformin [29]. In our analysis, we compared 
the effectiveness of GLP-1 M treatment alone with that 
of the combination of GLP-1  M treatment with other 
medications. Interestingly, we only observed the nega-
tive effects of thiazolidinediones and sulfonylureas on 
GLP-1  M effectiveness in our final predictive model, 
which was built using all the features shown in Sup-
plemental Fig. 2. Our univariate analysis did not detect 
any association. Therefore, further study is required to 
fully understand the combined effect of these drugs on 
improving HbA1C.

Machine learning and artificial intelligence have been 
successfully used in various fields. Although machine 
learning models often appear to be a black box, hav-
ing such a prediction model would be extremely ben-
eficial for real-world applications and patient treatment 
decisions. Our best prediction model was the logistic 
regression model with a 0.77 auROC. Complex models 
such as LightGBM and artificial neural network all per-
formed similarly to logistic regression. This result is not 
unprecedented; in a recent study predicting patient sur-
vival after heart transplantation, all models tested dem-
onstrated similar performance to logistic regression [30]. 
The authors hypothesized that the quality of the clini-
cal datasets might limit the application of the machine 
learning techniques. In addition to data quality, in our 
experience one limitation comes from the inherent bias 
within healthcare data sets. A typical patient has a lim-
ited number of standard-of-care lab tests commonly 
ordered by their attending physician. Thus, the models 
used here had no opportunity to explore more rare fea-
tures which might have as yet un-identified relationships 
with GLP-1  M treatment. Since it is impossible to test 
all the lab values for a patient, a combination of genomic 
information with clinical information might be the best 
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way to identify the individuals that will benefit most 
from GLP-1 M treatment. In the future, approaches such 
as this may help to define physiologic and mechanistic 
causes for the differences in GLP-1 M responsiveness. 

In conclusion, this study demonstrates that a predictive 
model based on commonly available clinical features can 
guide the use of GLP-1 M medications in T2D treatment. 
By identifying key factors such as age, race, T2D dura-
tion, HbA1C levels, BMI, hypertension, and the presence 
of other conditions like heart failure or retinopathy, our 
model provides a personalized tool for clinicians to make 
informed treatment decisions. Future research incor-
porating patients’ genomic information are expected to 
build better model.
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