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Background
Metabolic syndrome (MetS) is a multifaceted condi-
tion characterized by a combination of metabolic dis-
turbances, including abdominal obesity, hypertension, 
impaired glucose regulation, and abnormal lipid levels 
[1]. Affecting approximately 20-25% of the global popula-
tion, MetS remarkably increases the odds of type 2 dia-
betes, cardiovascular diseases, kidney failure, and overall 
mortality [2, 3]. It is also linked to heightened odds of 
developing reproductive disorders, nonalcoholic steato-
hepatitis, and various cancers [4, 5]. Although the precise 
etiology of MetS remains largely unclear, it is recognized 
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Abstract
Background Selenium is a key regulator of metabolic homeostasis. It has been proposed that exposure to selenium 
might be associated with metabolic syndrome (MetS). However, the results are contradictory. This meta-analysis was 
carried out to analyze the relationships between selenium levels in biological samples and odds of Mets.

Methods We searched Scopus and PubMed databases up until September 2024 to identify relevant studies. Odds 
ratio (OR) and 95% confidence interval was used to pool the data using a random effects model.

Results The meta-analysis encompassed 18 observational studies involving 21,481 participants. It found that higher 
selenium exposure was related to an elevated likelihood of MetS (OR = 1.30, 95% CI = 1.12–1.51), even after controlling 
for covariates, such as smoking, age, alcohol consumption, and physical activity. Heterogeneity was significant among 
the studies (I² = 88.9%, P = 0.001). While elevated serum selenium levels linked to a higher odds of MetS, no such 
relationship was observed for selenium in urine or toenails. Subgroup analyses indicated that this association was 
evident only in females (OR = 2.0, 95% CI = 1.17–1.43) and particularly pronounced in individuals aged ≥ 50 years. A 
dose-response relationship was identified, showing a 6% increase in MetS odds for each additional 10 µg/L of serum 
selenium, with the odds rising non-linearly when serum levels surpassed 80 µg/L.

Conclusions This study suggests that selenium may associated with the odds of MetS, following a dose-response 
relationship.
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to arise from a complex interplay of genetic, metabolic, 
and environmental factors, such as unhealthy dietary pat-
terns [6–8]. As lifestyle and dietary patterns shift in tan-
dem with the growing obesity epidemic, the prevalence 
of MetS is rapidly growing [9]. Therefore, preventing 
MetS is essential, making the identification of its risk fac-
tors critically important.

Oxidative stress plays a leading role in the pathophysi-
ology of MetS, either prompting or exacerbating the 
mechanisms associated with its pathology [10]. Selenium, 
an essential trace element primarily sourced from the 
diet, contributes to the preservation of redox balance and 
endocrine and metabolic processes [11]. Recent studies 
have indicated a correlation between circulating selenium 
levels and metabolic risk factors, such as glycemic indices 
[12] and lipid profiles [13]. Selenium is crucial for human 
health due to its incorporation into selenoproteins, which 
are vital for antioxidant defense, insulin function, and 
thyroid hormone metabolism [14]. It is a key component 
of glutathione peroxidase (GSH-PX), which protects the 
body from oxidative damage by reducing lipid peroxida-
tion and preserving the integrity and functionality of cell 
membranes [15].

Given the roles of selenium-dependent enzymes in 
oxidative stress and metabolic pathways, there has been 
significant interest in exploring the relationship between 
selenium exposure and MetS. However, the association 
of selenium levels in various biological samples, such as 
serum, urine, and nails, with MetS remains debated, with 
studies yielding inconsistent results. Some research indi-
cates that elevated selenium levels may be linked to an 
increased odds of MetS [16, 17], while other studies sug-
gest a protective effect or no significant association [18]. 
This could stem from the differences in study designs, 
types of samples collected, population characteristics, 
and the methodologies used to measure selenium expo-
sure. This meta-analysis aimed to comprehensively syn-
thesize the existing literature on the relationship between 
selenium concentrations in various biological samples 
and the odds of developing MetS to determine whether 
selenium exposure can be regarded as a modifiable risk 
factor for MetS and identify any potential dose-response 
relationships.

Methods
Information sources and search strategy
The meta-analysis was performed following the guide-
lines established by the PRISMA [19]. Relevant pub-
lications were recruited by searching the Scopus and 
PubMed databases up until September 2024, utilizing 
the following keywords: (“Selenium“[Mesh]) OR sele-
nium OR selenite OR seleno OR selenious acid) AND 
(“Metabolic Syndrome“[Mesh] OR Metabolic Syndrome). 
The search was restricted to English-language articles. 

Furthermore, we manually reviewed the reference lists 
of eligible studies and relevant reviews to uncover any 
further qualifying studies. In cases where clarification 
was required or additional data were not present in the 
published manuscripts, the authors of the included stud-
ies were contacted directly. All literature was organized 
using EndNote X7 software. Two authors independently 
assessed the titles and abstracts of each article to deter-
mine their relevance, eligibility for inclusion, data extrac-
tion, and quality evaluation. Any disagreements were 
settled by consulting a third author.

Eligibility criteria
Studies were included if they satisfied the predefined 
inclusion criteria based on the PICO framework, which 
were as follows: (1) the population consisted of individu-
als at risk of MetS, (2) the exposure involved selenium 
levels in various biological samples, (3) the controls 
were individuals with the lowest selenium exposure, (4) 
the outcome measured was the odds of MetS, and (5) 
the studies were observational in design, encompass-
ing cohort, case-control, and cross-sectional studies. 
Additionally, to qualify for inclusion, the studies had to 
provide risk estimates for the relationship between sele-
nium concentrations in biological samples and MetS. We 
excluded animal studies, those with irrelevant exposures 
or outcomes, clinical trials, reviews, letters, protocols, 
short combinations, and editorials.

Data extraction
Data was gathered from each included study using a stan-
dardized protocol and reporting form, which encom-
passed the following information: country, first author’s 
name, publication year, sample size, number of patients 
with MetS, definition of MetS, method of selenium mea-
surement, study design, mean age and gender of partici-
pants, and the covariates adjusted for in the analyses.

Quality assessment
Two investigators (RY and YZ) independently measured 
the quality of the eligible publications with the use of 
the Newcastle-Ottawa Scale (NOS) [20], which assesses 
various domains, including selection, comparability, and 
assessment of exposure and outcome. The final quality 
scores were determined by the total number of criteria 
met, classified as follows: 7–9 asterisks (high quality), 
4–6 asterisks (medium quality), and 1–3 asterisks (low 
quality).

For cross-sectional studies, a modified version of NOS 
was used according to the previous studies [21]. The NOS 
had the following domains to assess the quality of cohort 
studies: representativeness of the exposed cohort, selec-
tion of the non-exposed cohort, ascertainment of expo-
sure, demonstration that the outcome of interest was not 
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present at the start of the study, study controls for the 
main covariate, study controls for any additional factors, 
assessment of outcome, adequacy of follow-up dura-
tion for outcomes occurrence, and loss-to-follow up. For 
case-control studies, NOS had the following domains: 
selection of cases and controls, sample size, compara-
bility of cases and controls, ascertainment of exposures, 
study controls for the main covariate, study controls for 
any additional factor, ascertainment of the outcome, and 
statistical test. For cross-sectional studies, NOS had the 
following domains: representativeness of the sample, 
sample size, non-respondents, ascertainment of expo-
sure, study controls for the main covariate, study controls 
for any additional factor, ascertainment of the outcome, 
and statistical test [21] (Table S1).

Statistical analysis
The odds ratio (OR) and 95% confidence intervals (CI), 
adjusted for a comprehensive set of covariates, were 
utilized as the effect size to pool the data. In instances 
where the study did not directly report risk estimates, 
we estimated the unadjusted ORs using the raw data 
provided. To evaluate heterogeneity across the articles, 
Cochran’s Q test and the I² statistic were employed, cat-
egorizing heterogeneity as low (0–25%), moderate (25–
50%), or high (> 50%) [22, 23]. A random-effects model 
was implemented for data pooling. Publication bias was 
examined using Egger’s statistics and funnel plots, with 
a p-value < 0.05 showing statistically significant [24, 25]. 
Sensitivity analyses were conducted by sequentially 
excluding individual studies to evaluate the reliability of 
the results. Subgroup analyses utilizing random-effects 
models were performed based on sample size, gender, 
age, quality of study, source of population, geographic 
region, definitions of MetS, and methods of selenium 
assessment to explore potential sources of heterogeneity. 
Additionally, meta-regression analysis was executed to 
determine if pooled estimates were influenced by partici-
pants’ age.

The analysis of linear dose-response relationship was 
conducted using varying cut-off points for categories 
in each study to calculate the (OR and 95%CI for MetS 
associated with every 10  µg/L increment in serum sele-
nium levels. This was performed through generalized 
least squares for trend estimation, following the method-
ologies proposed by Greenland and Longnecker [26] and 
Orsini [27]. The median serum selenium within each cat-
egory was utilized as the corresponding dose. The rela-
tionship between selenium concentration and MetS odds 
was delineated for each distribution of cases and controls 
according to this method. Studies that failed to quantify 
the number of cases and controls within each category or 
that reported selenium concentrations with OR and 95% 
CI for fewer than three categories were removed from 

this dose–response analysis. Furthermore, we evalu-
ated a non-linear dose–response curve relating serum 
selenium concentration to the summary OR and 95% CI 
for MetS. A restricted cubic spline model featuring four 
knots at the 5th, 35th, 65th, and 95th percentiles of sele-
nium concentration was employed. Both linear and non-
linear models were derived by testing the null hypothesis, 
with the spline coefficients set to zero [28]. All statistical 
analyses were done with the use of Stata version 14 (Stata 
Corp, College Station, TX), with significance for pooled 
estimates established at p < 0.05.

Results
Study characteristics
Our preliminary literature review identified 667 pub-
lications. After removing 73 duplicates and 558 irrel-
evant studies, we conducted a full-text screening of 36 
potentially relevant articles. Ultimately, 18 studies were 
excluded for failing to meet al.l eligibility criteria, as illus-
trated in Fig. 1. The meta-analysis included 18 studies [9, 
11, 16–18, 29–41], comprising 9 case-control studies, 8 
cross-sectional studies, and one cohort study. The sam-
ple sizes of these studies ranged from 145 to 3,272 par-
ticipants, totaling 21,481 individuals. Among these, there 
were 6,231 cases of MetS. One study focused exclusively 
on women [39], three on men [9, 29, 31], while five pro-
vided separate results for both genders [9, 16, 17, 30, 40]; 
the remaining studies presented combined data. Out of 
the included studies, 15 evaluated serum selenium levels 
[9, 11, 16–18, 29–31, 33, 35, 36, 38–41], two examined 
urinary selenium [32, 37], and one assessed toenail sele-
nium concentrations [34]. Measurement techniques var-
ied: 11 studies utilized inductively coupled plasma mass 
spectrometry (ICP-MS), four employed atomic absorp-
tion spectrometry, one used spectrofluorimetry, and 
another utilized neutron activation analysis; one study 
did not specify the method of selenium assessment. Par-
ticipants’ mean ages ranged from 15.3 ± 2.6 to 73.4 ± 5.74 
years. MetS was defined using the National Cholesterol 
Education Program Expert Panel and Adult Treatment 
Panel (III NCEP-ATP III) in 5 studies, IDF in 5 studies, 
Chinese criteria in 5 studies, The Joint Interim Statement 
in one study, and one study did not report the criteria 
used to define MetS. According to the Newcastle-Ottawa 
Scale (NOS), the quality of the included studies ranged 
from low to high, with scores between 3 and 9 (Table S1). 
Detailed characteristics of each study are summarized in 
Table 1.

Meta-analysis
The forest plot depicting the pooled association between 
selenium concentrations and MetS odds is shown in 
Fig. 2. The pooled odds ratio (OR) was calculated at 1.30 
(95% CI = 1.12–1.51) for higher versus lower selenium 
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concentrations, indicating significant heterogeneity 
among the studies (I² = 88.9%, P = 0.001) (Fig.  2). The 
results of subgroup analyses are presented in Table  2. 
The results were supported by hospital-based studies 
and studies with a low risk of bias. Subgroup analyses 
revealed the increased odds of MetS in females (OR = 2.0, 
95% CI = 1.17–1.43), but not in males. Elevated serum 
selenium levels were associated with increased odds of 
MetS; however, no such association was found for uri-
nary or toenail selenium concentrations. This associa-
tion was particularly evident among individuals aged ≥ 50 
years and in studies employing the NCEP-ATP III and 
Chinese definitions for MetS, as well as within Asian 
populations and those measuring selenium via ICP-MS 
or atomic absorption spectrometry. In subgroup analy-
ses adjusting for covariates, higher selenium levels were 

linked to increased odds of MetS when controlling for at 
least one potential covariate or when age was accounted 
for; however, associations remained unchanged when 
not adjusted for energy intake, body mass index (BMI), 
or education level. The relationship did not vary signifi-
cantly in the stratified analysis according to the adjust-
ment for alcohol consumption, sex, physical activity level, 
and smoking status among participants (Table 2).

A total of seven studies [9, 11, 17, 33, 36, 40, 41] pro-
vided data for dose-response meta-analysis. The OR 
for MetS was found to be 1.06 (95% CI = 1.003–1.12) 
per 10  µg/L increase in serum selenium concentration 
(Fig. 3). Notably, a direct nonlinear association between 
serum selenium concentration and MetS odds was 
observed (P < 0.001) (Fig.  4), indicating that the odds of 
MetS ascended when serum selenium surpassed 80 µg/L.

Fig. 1 Flow diagram of study selection
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Meta-regression and sensitivity analysis
The meta-regression analysis indicated that pooled effect 
sizes were unaffected by sample size, participant age, or 
publication year. Sensitivity analyses confirmed that no 
individual study significantly affected the pooled effect 
sizes, indicating the reliability of the findings.

Publication bias
A significant publication bias was detected (P = 0.007) 
(Fig.  5). However, following a trim-and-fill analysis to 
adjust for this bias, the pooled effect size remained 
unchanged, suggesting that publication bias had a negli-
gible impact on the results.

Discussion
This analysis identified a direct relationship between 
serum selenium levels and the odds of MetS in females, 
particularly among older individuals (≥ 50 years), while 
no such association was observed in males. The rela-
tionship remained significant even after controlling for 
covariates such as age, smoking habits, alcohol intake, 
and levels of physical activity. Specifically, a dose-
response relationship was identified, indicating a 6% rise 
in MetS odds for every 10  µg/L increase in serum sele-
nium concentration. Notably, this association exhibited a 
non-linear trend, with the likelihood of MetS increasing 
when serum selenium levels exceeded 80 µg/L.

The overall results of this study align with several previ-
ous observational studies that reported positive correla-
tions between serum selenium levels and MetS [16, 40]. 
It has been observed that individuals with MetS have 
higher serum selenium levels compared to healthy con-
trols [40]. Furthermore, serum selenium levels have been 
positively linked to various components of MetS, includ-
ing insulin resistance, fasting glucose, obesity, and triglyc-
erides [17]. The dual function of selenium as an essential 
nutrient and a possible risk factor for metabolic disorders 
has been previously proposed. Numerous studies high-
light this contradiction, indicating that while selenium 
is vital for various physiological functions, including 
antioxidant defense and thyroid hormone metabolism, 
excessive selenium exposure may be linked to adverse 
health outcomes. For instance, some research suggests 
that selenium deficiency is associated with metabolic 
disorders due to oxidative stress and impaired signaling 
pathways, while other studies indicate that high serum 
selenium levels correlate with a heightened risk of these 
same conditions. Recent studies indicate that elevated 
blood selenium concentrations may adversely impact 
cardiovascular metabolic risk factors [13] and type 2 dia-
betes (T2DM) [42]. Elevated serum selenium levels have 
been correlated with increased concentrations of total 
cholesterol, low-density lipoprotein-cholesterol (LDL-c), 
high-density lipoprotein-cholesterol (HDL-c) triglyceride St
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(TG), and increased odds of dyslipidemia [43]. High 
serum selenium levels are associated with impaired fast-
ing glucose and elevated fasting serum glucose [44]. 
While deficiency of selenium might be a risk factor for 

the development of high blood pressure [45], chronic 
overexposure to environmental selenium may increase 
blood pressure [46]. Moreover, a significant association 
between adiposity indices and selenium status has been 

Fig. 2 Meta-analysis of the association between selenium levels and metabolic syndrome for the highest compared with the lowest exposure
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Table 2 Overall and subgroup analyses for the association between selenium levels and the odds of metabolic syndrome
Hormones Subgroups Studies (effect sizes) Test of effect Test of 

heterogeneity
OR (95%CI) I2 (%) P

Overall 18 (26) 1.10 (1.03–1.17) 87.3 0.001
Population Community-based 14 (20) 1.09 (0.95–1.25) 86.3 0.001

Hospital-based 4 (6) 2.49 (1.57–3.96) 73.7 0.002
Quality of studies Low risk of bias 13 (21) 1.36 (1.12–1.66) 88.2 0.001

High risk of bias 5 (5) 1.29 (0.86–1.99) 92.8 0.001
Gender of participants Both 12 (12) 1.02 (0.96–1.08) 85.6 0.001

Male 8 (8) 1.32 (0.96–1.81) 76.7 0.001
Female 6 (6) 2.00 (1.17–3.43) 94.2 0.001

MetS definition NCEP-ATP III 5 (7) 1.75 (1.10–2.80) 86.9 0.001
IDF 5 (6) 1.25 (0.91 to 1.72) 91.8 < 0.000
Chinese criteria 5 (10) 1.69 (1.14 to 2.50) 82.4 < 0.000
JIS 1 (1) 0.61 (0.45 to 0.83) 0.0 < 0.000
NR 2 (2) 1.00 (0.37 to 2.71) 92.1 < 0.000

Sample size ≥ 1000 participants 9 (12) 1.16 (0.90 to 1.50) 84.6 < 0.000
< 1000 participants 9 (14) 1.65 (1.34 to 2.05) 89.8 < 0.000

Age of participant ≥ 50 years 12 (19) 1.64 (1.23 to 2.20) 89.5 < 0.000
< 50 years 4 (5) 1.10 (0.94 to 1.28) 70.3 0.009
NR 2 (2) 0.82 (0.39 to 1.72) 65.1 0.090

Study type Case-control 9 (16) 1.66 (1.33 to 2.06) 91.5 < 0.000
Cohort 1 (1) 1.12 (0.88 to 1.42) 0.0 < 0.000
Cross- sectional 8 (9) 1.09 (0.88 to 1.36) 69.4 0.001

Geographical region Asian 16 (23) 1.52 (1.21 to 1.90) 88.7 < 0.000
Non- Asian 2 (3) 1.05 (0.88 to 1.25) 72.7 0.026

Selenium assessment ICP-MS 11 (15) 1.41 (1.03 to 1.93) 86.0 < 0.000
Atomic absorption spectroscopy 4 (8) 1.80 (1.30 to 2.49) 91.2 < 0.000
Spectrofluorimetry 1 (1) 0.95 (0.87 to 1.04) 0.0 < 0.000
Neutron activation analysis 1 (1) 1.33 (0.58 to 3.05) 0.0 < 0.000
NR 1 (1) 0.61 (0.43 to 0.87) 0.0 < 0.000

Sample type Serum 15 (23) 1.43 (1.22 to 1.68) 89.0 < 0.000
Urine 2 (2) 0.89 (0.70 to 1.14) 0.0 0.469
Toenail 1 (1) 1.33 (0.58 to 3.05) 0.0 < 0.000

Adjustment for any covariates Yes 15 (23) 1.42 (1.19 to 1.70) 85.4 < 0.000
No 3 (3) 1.27 (0.58 to 2.82) 95.9 < 0.000

Adjustment for age Yes 13 (20) 1.26 (1.08 to 1.47) 78.5 < 0.000
No 5 (6) 1.94 (0.92 to 4.10) 96.1 < 0.000

Adjustment for sex Yes 10 (16) 1.39 (1.09 to 1.77) 81.0 < 0.000
No 8 (10) 1.46 (1.09 to 1.96) 92.1 < 0.000

Adjustment for smoking Yes 11 (17) 1.44 (1.11 to 1.87) 85.4 < 0.000
No 7 (9) 1.27 (1.03 to 1.56) 89.0 < 0.000

Adjustment for alcohol drinking Yes 11 (17) 1.44 (1.11 to 1.87) 85.4 < 0.000
No 7 (9) 1.27 (1.03 to 1.56) 89.0 < 0.000

Adjustment for total energy intake Yes 2 (3) 1.14 (0.88 to 1.48) 58.1 0.11
No 16 (23) 1.42 (1.20 to 1.67) 88.7 < 0.000

Adjustment for BMI Yes 5 (7) 1.42 (0.80 to 2.50) 90.0 < 0.000
No 13 (19) 1.38 (1.18 to 1.61) 87.4 < 0.000

Adjustment for education Yes 5 (5) 0.93 (0.65 to 1.32) 71.3 0.10
No 13 (21) 1.49 (1.26 to 1.75) 89.0 < 0.000

Adjustment for physical activity Yes 8 (12) 1.63 (1.15 to 2.30) 89.7 0.001
No 10 (14) 1.22 (1.03 to 1.43) 83.7 0.001
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Fig. 4 Non-linear dose-response meta-analysis of the association between serum selenium levels and metabolic syndrome

 

Fig. 3 Linear dose-response meta-analysis of the association between serum selenium levels and metabolic syndrome per 10 µg/L increment in sele-
nium levels

 



Page 10 of 14Yuan et al. BMC Endocrine Disorders           (2025) 25:49 

suggested [47]. In contrast, reduced levels of selenium in 
urine and nails can be found in overweight or obese indi-
viduals [48].

In our study, we further identified the dose-response 
relationship between selenium and MetS, particularly in 
certain demographics such as females and older adults. 
These findings highlight the role of serum selenium as 
a biomarker for assessing MetS odds. The findings can 
inform public health policies aimed at addressing nutri-
tional deficiencies or excesses in selenium, particularly 
in populations at higher odds for MetS. Identifying indi-
viduals with elevated selenium levels may help in early 
intervention strategies aimed at reducing MetS preva-
lence. Given the dose-response relationship observed, 
healthcare providers may consider monitoring selenium 
levels in patients at odds for MetS. This could lead to 
tailored dietary or supplementation recommendations 
to optimize selenium intake and potentially mitigate 
the associated risks. Given the potential risks associ-
ated with excessive selenium intake, public health poli-
cies may need to emphasize balanced dietary sources of 
selenium rather than high-dose supplementation. Future 
research should further explore the mechanisms behind 
this association and consider the implications for dietary 

guidelines to mitigate the risk of MetS while ensuring 
adequate selenium levels for overall health.

Supporting our findings, previous research has high-
lighted significant sex-specific effects of selenium on 
MetS odds, with associations observed either exclusively 
in females or showing a stronger correlation in females 
compared to males [17, 49]. The observed sex-specific 
differences could stem from a complex interplay of 
hormonal influences, metabolic processes, nutritional 
requirements, genetic factors, and age-related changes. 
Estrogen and other sex hormones may modulate how 
selenium affects metabolic processes. In females, estro-
gen can influence insulin sensitivity, adiposity, and lipid 
metabolism, potentially enhancing the impact of sele-
nium on these pathways [50]. This hormonal interac-
tion may explain why higher selenium levels are more 
strongly associated with MetS in women compared to 
men, who may not experience the same hormonal effects 
[17, 49]. Research indicates that selenium is more closely 
related to adiposity and lipid metabolism in females [49]. 
Differences in dietary patterns and nutritional needs 
between sexes could influence serum selenium levels and 
their health implications [51]. Women may require differ-
ent amounts of selenium for optimal metabolic function 
compared to men [52], leading to differing associations 

Fig. 5 Funnel plot for publication bias
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with MetS. Females often present with different comor-
bid conditions associated with MetS compared to males 
[53]. The interaction between selenium levels and these 
conditions may vary by sex [54], influencing how each 
gender responds to changes in selenium status. The 
study highlights that the association is particularly pro-
nounced in older individuals (≥ 50 years). Age-related 
hormonal changes in women, such as menopause, can 
alter metabolic processes and potentially enhance the 
impact of selenium on MetS odds [55]. Additionally, bio-
synthesis of selenoenzymes and selenoproteins displays 
sex-specific differences in a dose-dependent manner 
[56]. In animal studies, the overexpression of glutathione 
peroxidase 1 (GPx1) in the context of hyperinsulinemia 
was observed exclusively in male mice [57], while GPx1 
expression in the liver was found to be higher in female-
derived cells compared to those from males [58]. Addi-
tionally, increased levels of selenoprotein P and insulin 
resistance were noted solely in female mice [59]. In 
human genetic studies, the England SELGEN study indi-
cated that women exhibited higher expression levels of 
GPx1 and selenoprotein P genes associated with obesity 
[60]. Conversely, GPx1 polymorphisms were linked to a 
greater incidence of MetS in men within a Japanese adult 
cohort [61]. Furthermore, in a Finnish cohort, variations 
in the selenoprotein S gene locus were associated with 
the odds of cardiovascular disease exclusively in females 
[62]. These factors could explain the gender-specific rela-
tionship observed in our study. However, the underlying 
mechanisms warrant further investigation.

The relation of selenium to MetS could be mediated 
through mechanisms involving insulin resistance, lipid 
metabolism, adiposity, and hormonal regulation. Sele-
nium plays a critical role in insulin signaling pathways, 
which are essential for glucose metabolism [63]. Elevated 
selenium levels have been associated with increased insu-
lin resistance, increased triglycerides, and altered lipid 
profiles, particularly in females [17], which are the com-
ponents of MetS. The direct effects of elevated blood 
selenium levels on glucose intolerance and dyslipidemia 
are mediated by various mechanisms, including the 
mevalonate pathway (which plays a role in the synthesis 
of selenoproteins and cholesterol), the regulation of lipo-
protein synthesis by selenoprotein P, and the influence of 
selenium compounds, particularly GPx1, on protein tyro-
sine phosphatase 1B [13, 16]. Excess selenium disrupts 
the redox-methylation balance through the methionine-
homocysteine cycle, resulting in excessive expression of 
GPx1 [64, 65]. Animal studies have shown that overex-
pression of GPx1 is linked to insulin resistance, hypergly-
cemia, and obesity [66]. In vitro and in vivo experiments 
suggest that selenoprotein P interferes with insulin 
signaling in the liver and muscle by reducing the phos-
phorylation of insulin receptors and protein kinase B 

(Akt) in response to insulin, while also decreasing insu-
lin sensitivity by lowering phosphorylation of AMP-acti-
vated protein kinase (AMPK) [67, 68]. This disruption 
contributes to insulin resistance (IR) and the develop-
ment of MetS. Regarding adiposity, serum selenium has 
been reported to have an inverse relationship with body 
mass index (BMI) in both men and women; however, it 
was associated with body fat percentage only in women 
according to the third NHANES study [69]. Such fat 
accumulation can exacerbate metabolic disturbances and 
increase the likelihood of developing MetS. Addition-
ally, overexpression of GPx1 has been linked to the onset 
of insulin resistance and obesity [66], further promot-
ing MetS development. A recent study indicated that a 
genetic variant of selenoprotein P is associated with glu-
tathione peroxidase 1 (GPX1) activity and fasting insu-
lin levels, suggesting that this mechanism may also play 
a role in the development of MetS [70]. Selenium may 
also influence the expression and activity of peroxisome 
proliferator-activated receptor gamma (PPAR-γ), a key 
regulator of glucose and lipid metabolism. Changes in 
PPAR-γ activity due to high selenium levels could affect 
metabolic processes and contribute to insulin resistance 
and dyslipidemia [39]. Furthermore, chronic overexpo-
sure to selenium may increase blood pressure, another 
component of MetS [46].

To our knowledge, this is the first meta-analysis explor-
ing the link between selenium exposure across various 
biological samples and MetS. The strengths of the study 
include its dose-response analysis and subgroup evalua-
tions across different factors while accounting for covari-
ate effects on the findings. However, several limitations 
exist. First, most studies included were cross-sectional or 
case-control in design, preventing the establishment of 
causality and making it difficult to determine if elevated 
serum selenium levels in women with MetS are a cause or 
a consequence of metabolic abnormality. Future research 
should focus on prospective cohort studies to clarify the 
relationship between selenium concentrations and MetS. 
Additionally, the results for some subgroup analyses, 
such as urinary and toenail selenium concentrations were 
limited by the small number of studies available, warrant-
ing cautious interpretation of these results. Nonetheless, 
serum selenium remains a reliable measure of selenium 
status and is a standard method used in epidemiological 
investigations [71]. Moreover, significant heterogeneity 
was found across studies; we identified that variations in 
sample type, participant demographics (age and gender), 
study design, geographic location, definitions of MetS, 
methods for assessing selenium levels, sample sizes, and 
the level of adjustments for covariates contributed to this 
heterogeneity. Morovere, the test for publication bias 
indicated that some smaller studies may have been over-
looked. The search was restricted to English-language 
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articles and some studies in other languages may be 
ignored. Lastly, we did not investigate the association of 
selenium exposure with individual components of MetS. 
Of the included studies, only a few studies provided risk 
estimates for specific components of MetS. Future stud-
ies could benefit from stratified analyses by MetS compo-
nents to better understand these relationships and their 
implications for public health.

Conclusions
In conclusion, this meta-analysis revealed that higher 
serum concentrations of selenium are directly related to 
the elevated odds of MetS in females, exhibiting a dose-
response relationship even after adjusting for covari-
ates such as age, alcohol consumption, physical activity 
level, and smoking status. However, no significant asso-
ciation was found in males. Prospective cohort studies 
are required to confirm these findings and to clarify the 
mechanisms underlying these associations.
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