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Abstract
Objective  This study aimed to investigate the association of dietary patterns (DPs) with risk of T2DM, emphasizing 
the intermediary role of HOMA or TyG indices among a Chinese adult population.

Research design and methods  Directed acyclic graphs combined with propensity score matching were used to 
minimize confounding, resulting in 1330 subjects for final analysis. Principal component analysis and reduced rank 
regression, applied to eleven food groups. Multivariable logistic regression and restricted cubic spline regression 
models were used to assess associations between there DPs with prevalent T2DM, as well as insulin resistance and 
β-cell function (HOMA-TyG). Mediation analyses were conducted to evaluate whether the HOMA-TyG index mediated 
the relationship between DPs and T2DM.

Results  The DP1, characterized by high intakes of poultry, meat, and preserved foods, was associated with elevated 
body mass index, triglycerides, and hemoglobin A1c. Both PCA-DP1(ORQ4VsQ1 = 2.15, 95% CI: 1.53–3.03) and RRR-DP1 
(ORQ4VsQ1 = 1.69, 95% CI: 1.82–3.58) were significantly positively correlated with T2DM. RRR-DP1 additionally 
demonstrated a dose-dependent relationship with HOMA-insulin resistance and TyG. Furthermore, the TyG index 
mediated approximately 19.51% of the relationship between RRR-DP1 and T2DM.

Conclusions  These findings indicate that glucose-lipid metabolism-related dietary pattern, notably high in animal 
fat, exacerbates insulin resistance and heightens T2DM risk. Tailoring dietary interventions to modify this pattern may 
be an effective strategy for preventing and managing T2DM.
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Introduction
Over the past several decades, dramatic socio-economic 
transitions and rapid urbanization in China have coin-
cided with a marked rise in the prevalence of type 2 
diabetes mellitus (T2DM) [1]. It is characterized by 
impaired insulin secretion and suboptimal peripheral tis-
sue response to insulin, ultimately affecting energy and 
glucose homeostasis [2]. Research has shown that T2DM 
development is multifactorial, involving genetic, epi-
genetic, lifestyle-related, and environmental factors [1]. 
According to the 2019 Global Burden of Diseases, dietary 
factor contributed to 29.7% of the disability-adjusted life-
year of diabetes [3]. Risk factors include higher intakes 
of unprocessed and processed meat, and low intakes of 
fresh fruit and vegetables [4, 5].

Emerging evidence underscores that focusing on over-
all dietary patterns (DPs), rather than individual foods or 
nutrients, may offer more practical insights for dietary 
interventions in the general population [6, 7]. Multiple 
analytical approaches have been used to identify these 
patterns, with a priori (dietary quality indices) and pos-
teriori (factor analysis or principal component analysis 
[PCA]) methods being the most common [8]. Hybrid 
approaches, such as reduced-rank-regression (RRR), can 
further elucidate causal pathways by combining both 
dietary data and intermediate biomarkers [9]. While RRR 
has been applied to examine DPs and various metabolic 
pathways, including glucose homeostasis [10], inflamma-
tory biomarkers [11], and blood lipids profiles [12], evi-
dence linking glucose-lipid metabolism-related dietary 
patterns to T2DM, especially in Chinese adults, remains 
scarce. To bridge this gap, we used three indicators of 
glucose metabolism, lipid metabolism, and adiposity 
measures in our RRR analysis, specially selecting HbA1c 
and fasting C-peptide over fasting glucose and fasting 
insulin to better capture longer-term glycemic control 
and endogenous insulin secretion [13].

Insulin resistance (IR), hyperinsulinemia and islet beta 
cell dysfunction are crucial in T2DM onset and progres-
sion [14], and dietary factors, particularly those rich in 
energy and macronutrient intakes, are implicated in both 
hyperinsulinemia and IR [15]. Although the homeostatic 
model assessment (HOMA) is widely used to evaluate 
β-cell function and IR [16], the triglyceride glucose (TyG) 
index has shown superior performance for predicting 
IR and has been proposed as a viable alternative marker 
[17]. Elevated TyG levels have been associated with 
T2DM and may serve as an early indicator of high-risk 
individuals [18]. Although previous studies have linked 
DPs to HOMA-IR [19] and suggest that diets high in sat-
urated fat exacerbate IR [20] while fiber intake improves 
glycemic control [21], investigations into the roles of DPs 
and TyG in T2DM are limited, and few have explored 

whether IR mediates the relationship between DPs and 
T2DM prevalence.

To address these gaps, we employed PCA and RRR to 
identify dietary patterns associated with glucose-lipid 
metabolism among Chinese adults. We then evaluated 
the association of these patterns with T2DM prevalence, 
with a particular focus on the mediating roles of HOMA 
and TyG indices.

Research design and methods
Inclusion and exclusion criteria
This community-based observational, cross-sectional 
study was conducted from June 2019 to December 2020 
in Jiangsu Province, eastern China. A total of 2230 sub-
jects, including 793 diabetes and 1437 non-diabetes 
were enrolled. All participants underwent a health 
examination, sample collection and a standardized face-
to-face questionnaire including general information, 
self-reported medical history and the use of medica-
tions, family history of diseases (hypertension, diabetes, 
etc.), lifestyle (cigarette smoking, alcohol drinking, etc.), 
dietary behavior, and so on. All physical examinations 
and interviews were performed by the trained healthcare 
staff. This study was approved by the Institutional Review 
Board of Changzhou Centers for Disease Control and 
Prevention (Changzhou CDC Ethics [2019] 01), and all 
the participants signed an informed consent form before 
participation.

Clinical and biochemical data
T2DM was defined according to the criteria of American 
Diabetes Association (ADA) [2], based on at least one of 
the following: a self-reported physician diagnosis, cur-
rent use of hypoglycemic medications or insulin, fast-
ing blood glucose (FBG) ≥ 7.0 mmol/L or HAb1c ≥ 6.5% 
validated at least twice in different periods. Body mass 
index (BMI) was calculated by weight in kilograms 
divided by the square of height in meters. It was divided 
into three levels: normal weight (18.5 ≤ BMI < 25.0), over-
weight (25.0 ≤ BMI < 28.0) and obesity (BMI ≥ 28.0) [22]. 
The planned structured exercise was defined as engag-
ing in (1) ≥ 20  min of strenuous exercise (e.g., running, 
climbing, cycling) for ≥ 3 days during the past week, 
(2) ≥ 30 min of regular exercise a little more challenging 
than usual (e.g., swimming, doubles tennis, volleyball) for 
≥ 5 days during the past week, or (3) ≥ 30 min of walking 
faster than 5 km/h for ≥ 5 days during the past week [23]. 
In our study, Participants were categorized into three 
groups according to exercise frequency: never, activity 
but not sufficient (< 3  day/week of planned), sufficient 
(≥ 3  day/week of planned). Smoking status was defined 
as having smoked at least 100 cigarettes in one’s lifetime. 
Drinking status was defined consuming alcohol at least 
once per month. Blood pressure was measured three 
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times by trained nurses using a standard mercury sphyg-
momanometer according to a protocol from American 
Heart Association (AHA) [24]. Hypertension was defined 
as systolic blood pressure (SBP) ≥ 140 mmHg and/or dia-
stolic blood pressure (DBP) ≥ 90 mmHg or history use of 
antihypertensive medications.

Plasma lipid concentrations [total cholesterol (TC), 
total triglycerides (TG), low-density lipoprotein cho-
lesterol (LDLC) and high-density lipoprotein choles-
terol (HDLC)] were measured using AU680 Chemistry 
Analyzers (Beckman-Coulter, Brea, CA, USA). High TC 
(≥ 6.22 mmol/L), High TG (≥ 2.26 mmol/L), low HDLC 
(< 1.04 mmol/L) and High LDLC (≥ 4.14 mmol/L) were 
defined according to the Guidelines for the Preven-
tion and Treatment of Dyslipidemia in Chinese Adults 
(revised 2016) [25]. Fasting insulin and C-peptide con-
centrations were measured using iFlash 3000 immu-
noanalyzers (YHLO Biotech, Shenzhen, China). The 
triglyceride-glucose (TyG) index was calculated based 
on the formula: TyG index = log [[fasting TC (mg/dL) * 
fasting blood glucose (mg/dL)]/2] [26]. The homeosta-
sis model assessment of β-cell function (HOMA-%β), 
HOMA of insulin resistance (HOMA-IR) was obtained 
[16]. HOMA-IR was calculated as [FBG (mmol/L) * fast-
ing insulin (IU/mL)]/22.5. HOMA-%β was calculated 
as [20*fasting insulin (IU/mL)/[FBG (mmol/L)-3.5]] %. 
Glucose and triglyceride values were converted from 
mmol/L to mg/dL and multiplied by 18.020 and 88.545, 
respectively.

Selection of covariates and propensity score matching
Directed acyclic graphs (DAGs), created using the DAG-
itty v3.0 (http://dagitty.net/), were utilized to identify 
the minimal sufficient set of confounders for this study 
[27]. DAGs have been shown to outperform traditional 
variable selection methods, such as step-wise regression 
procedures, by explicitly modeling causal relationships 
[28]. For this analysis, T2DM was designated as the out-
come and dietary patterns as the exposure. The minimal 
sufficient adjustment set included age, gender, house-
hold income, education, occupation, drinking, smoking, 
physical exercise, family history of diabetes, obesity, and 
metabolic syndrome (Figure S1). Subsequently, covari-
ate balancing generalized propensity score were com-
puted, and a 1:1 nearest neighbor matching algorithm 
with a caliper of 0.02 was used to create matched case-
control pairs. Standardized mean differences (SMD) were 
evaluated before and after matching to ensure balance of 
covariates. Following propensity score matching (PSM), 
1330 participants remained for subsequent analyses.

Dietary analysis
Dietary intake over the preceding 12 months was 
assessed using a food frequency questionnaire (FFQ) 

adapted from a previous study and from the National 
Institute for Nutrition and Health, Chinese Center for 
Disease Control and Prevention [29, 30]. Eleven major 
food items of the local area were included: rice, wheat, 
poultry, meat, fish, eggs, fresh vegetables, fresh fruits, 
soybeans, dairy products, and preserved food. Consump-
tion frequencies were recorded as never/rarely, 1–3 days/
week, 4–6 days/week, or daily, corresponding to 0, 2, 5, 
or 7 days/week, respectively. The estimated weekly intake 
for each food group was calculated as the average con-
sumption per day multiplied by the frequency category. A 
subset of 197 participants completed repeat FFQs within 
one year, demonstrating satisfactory reproducibility.

PCA was used to derive dietary patterns based on 
these 11 food groups. Patterns were identified accord-
ing to screen plot, eigenvalues > 1, interpretability and 
the amount of variance explained. Factor loading with 
values above 0.25 or lower than − 0.25 indicated promi-
nent types. The RRR was performed to identify glucose-
lipid metabolism-related dietary patterns, using 11 food 
groups as predictors and the the following biomarker 
responses: HbA1c, C-peptide, TC, TG, HDLC, LDLC, 
BMI. Absolute factor loading > 0.25 characterized each 
dietary pattern, and corresponding factor scores were 
derived from weighted combinations of standardized 
food group intakes. Spearman’s correlation was used to 
relate these factors to continuous variables, while point-
biserial correlation was employed for binary variables.

Statistical analysis
All statistical analyses were conducted on software Stata 
version 15.0 and R version 4.0.5. The Shapiro–Wilk test 
was conducted to assess the normality of continuous 
variables. Normally distributed data are expressed as 
mean ± standard deviation (SD), whereas non-normally 
distributed data are presented as median (25th-75th 
percentile). Categorical variables are expressed as per-
centages (%). The chi-square test, Fisher’s exact test, 
Mantel-Haenszel method, and ANOVA were employed to 
compare group differences where appropriate.

Restricted cubic spline regression (RCS) models with 
three knots placed at the 1th, 50th and 99th percentiles 
were conducted to explore potential non-linear dose-
response relationship between dietary patterns and 
adverse outcomes (insulin resistance (HOMA-IR, TyG 
index) or islet β cell function (HOMA-%β) or T2DM). 
Each dietary pattern score was also divided into quan-
tiles, with the fourth quantile (Q4) signifying the high-
est consumption. Multiple logistic regression and 
generalized linear models were modeled to obtain effec-
tive parameters (odds ratios (OR) or beta coefficients (β) 
and 95% confidence intervals (CI)) and applied to assess 
the relationships between prevalent T2DM and dietary 
patterns. Three models were specified: model 1 was 

http://dagitty.net/


Page 4 of 13Li et al. BMC Endocrine Disorders          (2025) 25:114 

crude without any covariables, model 2 was adjusted for 
age, gender, education, occupation, household income, 
physical exercise, drinking, smoking, and model 3 further 
adjusted for family history of diabetes, obesity, metabolic 
syndrome. Covariates in models were derived from the 
primary DAG analysis. Mediation analyses were per-
formed to assess the indirect effects of DPs on the risk 
of T2DM through HOMA-IR, HOMA-%β, or TyG index, 
while controlling for covariates. The bootstrap method 
with 5000 samples was used to estimate indirect and total 
effects, and the mediation ratio was calculated as (indi-
rect effect/total effect) *100. Cochran-Armitage trend 
tests were employed for statistical trend analyses. All 
reported P-values were two-sided and values 0.05 were 
considered statistically significant.

Sensitivity and subgroup analyses
Missing data were imputed using multiple imputation 
(“mice” package, ​h​t​t​p​​s​:​/​​/​c​r​a​​n​.​​r​-​p​​r​o​j​​e​c​t​.​​o​r​​g​/​w​​e​b​/​​p​a​c​k​​
a​g​​e​s​/​m​i​c​e​/​i​n​d​e​x​.​h​t​m​l). Additional models were fitted 
for comparison with the DAG approach, including full 
models containing all variables and models with another 
statistical variable selection method (least absolute 

shrinkage and selection operator (LASSO) regression) 
[31]. Covariates were gender, marriage status, physical 
activity, family history of diabetes, BMI, dyslipidemia. 
Subgroup analysis was further performed according to 
age, gender, and BMI categories.

Results
Characteristics of dietary patterns
A total of 2230 (49.98%, males) participants provided 
dietary data, with ages ranged from 20 to 92 years 
(mean 53.73 years). After propensity score matching, 
the balance between case and control groups improved 
substantially, as indicated by SMDs below 10% for char-
acteristics including age, gender, education status, occu-
pation, smoking, drinking and family history of diabetes 
(Fig. 1; Table 1).

As Fig.  2 and Table S1 depicts, three glucose-lipid 
metabolism-related dietary patterns were identified using 
PCA and RRR methods. The first dietary pattern (DP 
1) was characterized by high intakes of animal fat foods 
(poultry, meat) and preserved foods. The second dietary 
pattern (DP 2) was marked by higher consumption of 
rice and wheat, whereas the third dietary pattern (DP 3) 

Fig. 1  Flow chart for screening subjects with inclusion and exclusion criteria
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Characteristics Before PSM (N = 2230) After PSM (N = 1330)
Non-T2DM, n = 1437 T2DM, n = 793 P SMD Non-T2DM, n = 665 T2DM, n = 665 P SMD

Age (mean ± SD, years) 49.1 ± 16.5 62.1 ± 9.59 < 0.01** 0.959 61.7 ± 11.9 61.4 ± 9.87 0.120 0.021
Gender 0.226 0.054 0.139 0.081
  Male 704 (48.99%) 410 (51.70%) 324 (48.72%) 351 (52.78%)
  Female 733 (51.01%) 383 (48.30%) 341 (51.28%) 314 (47.22%)
Marriage status < 0.01** 0.495 0.133 0.100
  Unmarried 183 (12.73%) 10 (1.26%) 11 (1.65%) 9 (1.35%)
  Married 1,214 (84.48%) 727 (91.68%) 623 (93.68%) 608 (91.43%)
  Divorced or other 40 (2.78%) 56 (7.06%) 31 (4.66%) 48 (7.22%)
Education status < 0.01** 0.759 0.543 0.061
  Primary school or below 615 (42.80%) 555 (69.99%) 468 (70.38%) 453 (68.12%)
  Junior or senior school 300 (20.88%) 177 (22.32%) 146 (21.95%) 151 (22.71%)
  College or above 522 (36.33%) 61 (7.69%) 51 (7.67%) 61 (9.17%)
Occupation status < 0.01** 0.385 0.355 0.099
  Managerial 618 (43.01%) 225 (28.37%) 232 (34.89%) 207 (31.13%)
  Worker 496 (34.52%) 332 (41.87%) 243 (36.54%) 261 (39.25%)
  Farmer 135 (9.39%) 51 (6.43%) 52 (7.82%) 45 (6.77%)
  Others 188 (13.08%) 185 (23.33%) 138 (20.75%) 152 (22.86%)
Household income per year < 0.01** 0.592 0.672 0.068
  Up to ¥3000 104 (7.24%) 140 (17.65%) 96 (14.44%) 106 (15.94%)
  ¥3001-¥10,000 557 (38.76%) 350 (44.14%) 307 (46.17%) 291 (43.76%)
  ¥10,001-¥30,000 512 (35.63%) 104 (13.11%) 109 (16.39%) 103 (15.49%)
  More than ¥30,001 264 (18.37%) 199 (25.09%) 153 (23.01%) 165 (24.81%)
Physical exercise 0.056 0.11 0.247 < 0.001
  Never 1,106 (76.97%) 634 (79.95%) 469 (70.53%) 532 (80.00%)
  Not sufficient 275 (19.14%) 142 (17.91%) 161 (24.21%) 120 (18.05%)
  Sufficient 56 (3.90%) 17 (2.14%) 35 (5.26%) 13 (1.95%)
BMI category, kg/m2 < 0.01** 0.229 0.030* 0.145
  Normal 679 (47.25%) 286 (36.07%) 282 (42.41%) 235 (35.34%)
  Overweight 528 (36.74%) 352 (44.39%) 263 (39.55%) 295 (44.36%)
  Obesity 230 (16.01%) 155 (19.55%) 120 (18.05%) 135 (20.30%)
Current drinking 362 (25.33%) 191 (24.39%) 0.630 0.021 164 (24.85%) 164 (24.92%) 0.970 0.002
Current smoking 356 (24.77%) 220 (27.74%) 0.050 0.143 169 (25.41%) 185 (27.82%) 0.580 0.057
Family history of Diabetes 188 (13.08%) 291 (36.70%) < 0.01** 0.568 137 (20.60%) 166 (24.96%) 0.058 0.104
Family history of Hypertension 542 (37.72%) 345 (43.51%) 0.008** 0.117 234 (35.19%) 261 (39.25%) 0.130 0.084
Hypertension 500 (35.51%) 500 (64.02%) < 0.01** 0.594 294 (45.16%) 415 (63.46%) < 0.01** 0.374
Dyslipidemia 435 (30.27%) 398 (50.19%) < 0.01** 0.415 259 (38.95%) 336 (50.53%) < 0.01** 0.234
Metabolic disorder 959 (83.54%) 408 (99.76%) < 0.01** 0.613 383 (92.51%) 359 (100.00%) < 0.01** 0.402
SBP, mmHg * 124 (114, 135) 134 (124, 144) < 0.01** 0.531 128 (120, 140) 133 (124, 144) < 0.01** 0.289
DBP, mmHg * 80 (73, 87) 80 (73, 87) 0.710 0.072 79 (73, 86) 80 (74, 87) 0.130 0.038
TC, mmol/L * 4.83 (4.26, 5.51) 4.92 (4.29, 5.64) 0.081 0.076 5.09 (4.43, 5.70) 4.92 (4.29, 5.66) 0.016* 0.121
TG, mmol/L * 1.30 (0.89, 1.91) 1.78 (1.24, 2.54) < 0.01** 0.426 1.49 (1.05, 2.06) 1.83 (1.25, 2.59) < 0.01** 0.336
LDLC, mmol/L * 2.93 (2.43, 3.49) 2.87 (2.33, 3.43) 0.031 0.094 1.33 (1.12, 1.55) 1.20 (1.02, 1.42) < 0.01** 0.252
HDLC, mmol/L * 1.40 (1.17, 1.62) 1.20 (1.01, 1.42) < 0.01** 0.04 3.11 (2.58, 3.60) 2.87 (2.33, 3.43) < 0.01** 0.066
FBG, mmol/L * 5.59 (5.24, 5.99) 7.82 (6.90, 9.25) < 0.01** 1.593 5.69 (5.31, 6.10) 7.84 (6.95, 9.30) 0.01** 1.535
HbA1c, % * 5.40 (5.10, 5.61) 6.97 (6.22, 7.88) < 0.01** 1.687 5.47 (5.13, 5.70) 6.96 (6.25, 7.94) < 0.01** 1.643
FIN, IU/L * 11 (8, 14) 10 (7, 15) 0.410 0.141 9.4 (7.0, 12.9) 10.5 (7.4, 15.4) < 0.01** 0.264
C-peptide, ng/mL * 2.07 (1.63, 2.65) 2.05 (1.53, 2.76) 0.240 0.008 1.97 (1.53, 2.53) 2.10 (1.55, 2.84) < 0.01** 0.173
Adiponectin, µg/mL* 6.87 (5.22, 9.11) 5.30 (4.21, 6.94) < 0.01** 0.364 6.52 (4.99, 8.78) 5.28 (4.18, 6.96) 0.01** 0.282
TyG index * 4.17 (3.80, 4.59) 4.86 (4.45, 5.29) < 0.01** 1.109 4.31 (3.97, 4.68) 4.88 (4.46, 5.31) < 0.01** 0.957

Table 1  Descriptive characters of participants in a community-based case-control study before and after matching
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featured greater intakes of fish, egg, soybeans, and dairy 
products. Correlations between factors and the response 
variables estimated, estimated via PCA and RRR, was 
presented in Figure S2. Notably, DP 1 showed a signifi-
cant positive association with elevated TG, BMI, and 
HbA1c.

Relationship of different dietary patterns with T2DM risk
Restricted cubic spline regression revealed linear dose-
response associations of PCA-DP1 and RRR-DP1 with 
risk of T2DM (Fig. 3). In the fully adjusted models, indi-
viduals in the highest quartile of these patterns had a 
markedly increased T2DM prevalence compared with 
those in the lowest quartile, whereas RRR-DP2 was 
negatively associated with T2DM (Table  2). Adjusting 
for additional confounders in model 3, DP1 continued 
to demonstrate a significant positive association with 
T2DM for both PCA [ORQ4VsQ1 = 2.15, 95% CI: 1.53–
3.03, P− trend < 0.01] and RRR [ORQ4VsQ1 = 1.69, 95% CI: 
1.82–3.58, P− trend < 0.01]. Conversely, RRR-DP2 main-
tained a significant negative association with T2DM 
[ORQ4VsQ1 = 0.65, 95% CI: 0.64–1.23, P− trend = 0.021], 
though PCA-DP2 did not reach statistical significance 

[ORQ4VsQ1 = 0.89, 95% CI: 0.64–1.23, P− trend = 0.581]. 
Neither PCA-DP3 nor RRR-DP3 showed significant asso-
ciations with T2DM (Table 2).

Sensitivity analyses using LASSO-based confounder 
selection supported these results, reinforcing the robust 
positive association of DP1 with T2DM [PCA: ORQ4VsQ1 
= 2.03, 95% CI: 1.47–2.83, P-trend < 0.001; RRR: ORQ4VsQ1 
= 2.38, 95% CI: 1.72–3.29, P-trend < 0.001] (Table S2).

Relationship of dietary patterns and HOMA-TyG index
As shown in Figure S3 and Fig. 4, we also observed the 
dose-response association of PCA-DPs or RRR-DPs with 
the HOMA-TyG index. RRR-DP1 had a significant lin-
ear association with both HOMA-IR and the TyG index 
(PHOMA−IR = 0.042, PTyG−index = 0.001, respectively), and 
PCA-DP1. Each one-unit increment of RRR-DP1 score 
was linked to 1.12 units higher HOMA-IR (β = 1.12, 
P < 0.001, model 3) and 0.14 units higher TyG (β = 0.14, 
P < 0.001, model 3) (Table  3). Likewise, PCA-DP1 was 
positively associated with TyG [βQ4VsQ1 = 0.13, 95%CI: 
0.04–0.21, P− trend = 0.006]. Again, Model 2 showed simi-
lar trends, and LASSO-based sensitivity analyses cor-
roborated the positive link of DP1 with TyG [ORQ4VsQ1 

Fig. 2  Spider-web diagram of factor loadings for selected food groups for the dietary pattern identified using principal component analysis (A) and 
reduced rank regression (B). PCA, principal component analysis; RRR, reduced rank regression; DP, dietary pattern
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BMI: body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, total triglycerides; LDLC, low-density lipoprotein 
cholesterol; HDLC, high-density lipoprotein cholesterol; FBG, fasting blood glucose; HbA1c, Hemoglobin A1c; FIN, fasting insulin; TyG index, triglyceride-glucose 
index; HOMA-IR, homeostasis model assessment of insulin resistance; HOMA-%β, homeostasis model assessment of β-cell function

Table 1  (continued) 



Page 7 of 13Li et al. BMC Endocrine Disorders          (2025) 25:114 

= 0.12, 95% CI: 0.04–0.20, P− trend < 0.001] and RRR 
[ORQ4VsQ1 = 0.15, 95% CI: 0.07–0.22, P− trend < 0.001] 
(Table S2).

Subgroup analysis
To confirm the association between DP1 and preva-
lent T2DM, subgroup analyses by gender, age, and BMI 
(Fig.  5) showed younger participants, and those with 
higher BMI were more prone to T2DM. Among males 
under 60 years of age, elevated RRR-DP1 scores were 
positively associated with T2DM prevalence and higher 
TyG (Table S3, S4).

Mediation by TyG in the relationship between dietary 
patterns and T2DM risk
Finally, RRR-DP1 was significantly associated with 
T2DM after full adjustment, and mediation analysis indi-
cated that the TyG index accounted for 19.51% of this 
relationship (Table 4, Tables S5, S6). Sensitivity analyses 
with LASSO-based models yielded comparable findings, 
underlining the mediating role of the TyG index in the 
link between dietary patterns and T2DM (Table S7).

Discussion
In this study, we applied both PCA and RRR within a 
propensity-score–matched case-control design to evalu-
ate how different DPs influence T2DM risk, insulin 
resistance, and β-cell function. Our results reveal that a 

“glucose–lipid metabolism–related” DP1, distinguished 
by high intakes of poultry, meat, and preserved foods, 
is strongly associated with T2DM prevalence—an effect 
that appears mediated in part by elevated HOMA-IR and 
the TyG index.

Dietary patterns represents a complex interplay of 
foods and nutrients that jointly influence metabolic 
health [32]. By combining PCA, which aggregates food 
group correlations, and RRR, which integrates disease-
specific biomarkers, we identified three distinct DPs. 
Consistent with prior epidemiological and interventional 
research [33–35], DP1 was characterized by significant 
consumption of processed or preserved meat and mini-
mal fruit or vegetable intake—factors that have been 
repeatedly linked to adverse metabolic outcomes, includ-
ing hypertriglyceridemia and postprandial hyperglycemia 
[36], contributing to IR and β-cell dysfunction [37].

Conversely, RRR-DP2—encompassing rice, wheat, and 
dairy—displayed an inverse association with T2DM, 
underscoring how biomarker-driven methods (RRR) 
can highlight potentially protective dietary components, 
such as high-fiber carbohydrates and certain dairy prod-
ucts [38, 39]. Although a “high-carbohydrate” diet is 
often viewed as a risk factor for T2DM [40], not all car-
bohydrate sources carry equal metabolic risks [41]. For 
instance, whole grains or minimally processed wheat and 
rice with higher fiber content can moderate postprandial 
hyperglycemia and reduce IR through improved glycemic 

Fig. 3  Dose-response association between dietary patterns (DP) of each method (principal component analysis and reduced rank regression) and 
prevalent T2DM (N = 1330). (A ~ C) PCA-derived DP 1 (panel A), PCA-derived DP 2 (panel B), PCA-derived DP 3 (panel C). (D ~ F) RRR-derived DP 1 (panel 
D), RRR-derived DP 2 (panel E), RRR-derived DP 3 (panel F). T2DM, type 2 diabetes mellitus. Odds ratios (OR) and 95% confidence interval derived from 
restricted cubic splines regression, with knots placed at the 1th, 50th and 99th percentiles of the distribution of DP scores. Models were adjusted for age, 
gender, education status, household income, physical exercise, drinking, smoking, family of diabetes, obesity, metabolic disorders
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control and altered gut microbiota composition [42]. 
Moreover, cultural and regional factors—including por-
tion sizes, cooking methods, and the combined intake 
of vegetables or lean protein—may collectively influence 
the net metabolic effect of carbohydrate-rich foods [43]. 
Thus, while RRR-DP2 appears high in carbohydrates, 
its potential protective effect may reflect the quality and 
context of these carbohydrates, rather than the simple 
quantity of total carbohydrates. Future research assessing 
refined versus unrefined grain intake could provide addi-
tional insights into these protective trends.

Although randomized controlled trials (RCTs) note 
that carbohydrate-reduced, high-protein diets improve 
postprandial glycemia [44], our DP3, characterized by 
fish, eggs, and soybeans, showed no significant correla-
tion with T2DM. One plausible explanation is that co-
consumption of refined sugars and processed meats may 
have dampened the inherent metabolic benefits of fish 
and soy [36, 45], emphasizing the importance of overall 
dietary context in shaping glycemic and lipid responses 
[46, 47].

Taken together, these patterns illustrate the multifac-
eted nature of diet–disease relationships. The robust link-
age between DP1 and T2DM risk, in conjunction with its 
positive relationship to HOMA-IR and TyG, highlights 
IR as an early and critical driver of glucose dysregulation 
[48, 49]. Diets rich in saturated fats and processed foods 
may accelerate IR through increased circulating triglycer-
ides, postprandial hyperglycemia, and chronic low-grade 
inflammation, ultimately burdening β-cell function [37]. 
Conversely, monounsaturated and polyunsaturated fats 
(MUFAs and PUFAs) could counteract IR by modifying 
cellular membrane composition and reducing inflam-
matory responses [50]. Our subgroup analyses further 
indicate that younger and obese individuals may be more 
susceptible, echoing findings in large cohort studies [9]. 
Coupled with evidence of TyG mediating role, these 
results support the hypothesis that dysregulated glucose–
lipid metabolism, fostered by certain dietary behaviors, 
predisposes to T2DM. Interestingly, in some sensitiv-
ity models, we observed instances of a negative propor-
tion mediated, which can occur when the indirect effect 
(via TyG) and direct effect of the dietary pattern move in 
opposite directions—a phenomenon known as competi-
tive mediation [51, 52]. Such negative mediation propor-
tions reflect the complexity of metabolic pathways and 
indicate that certain dietary components may partially 
mitigate or offset the diet’s overall impact on T2DM. 
Reporting both direct and indirect effect estimates pro-
vides a clearer interpretation of these opposing forces 
[53].

In this context, adhering to a healthy lifestyle—includ-
ing diets rich in fiber, unsaturated fats, whole grains, 
fruits, and vegetables—can effectively reduce the 

Table 2  Odds ratios (OR) and 95% confidence interval (CI) of 
prevalent T2DM associated with each score increase in DP
Odds Ratio (95% Confidence Interval)
Quartile 1 (Ref-
erence, n = 332)

Quartile 2 
(n = 331)

Quartile 3 
(n = 331)

Quartile 4 
(n = 332)

P for 
Trend 
§

Principal component analysis
DP 1
  Crude model 
(Model 1) 1.00

1.44 (1.06, 
1.96) *

1.42 (1.05, 
1.93) *

1.90 (1.40, 
2.60) ***

< 0.001

  Model 2 1.00 1.46 (1.06, 
2.00) *

1.52 (1.10, 
2.08) *

2.12 (1.53, 
2.93) ***

< 0.001

  Model 3 1.00 1.36 (0.98, 
1.89)

1.42 (1.02, 
1.98) *

2.15 (1.53, 
3.03) ***

< 0.001

DP 2
  Crude model 
(Model 1) 1.00

0.91 (0.67, 
1.23)

0.98 (0.72, 
1.32)

0.89 (0.66, 
1.21)

  Model 2 1.00 0.91 (0.67, 
1,24)

1.00 (0.73, 
1.35)

0.90 (0.66, 
1.22)

0.639

  Model 3 1.00 0.95 (0.69, 
1.31)

1.01 (0.73, 
1.40)

0.89 (0.64, 
1.23)

0.581

DP 3
  Crude model 
(Model 1) 1.00

0.90 (0.66, 
1.22)

0.95 (0.70, 
1.29)

1.01 (0.75, 
1.37)

  Model 2 1.00 0.89 (0.66, 
1.22)

0.97 (0.71, 
1.31)

0.96 (0.71, 
1.31)

0.943

  Model 3 1.00 0.84 (0.60, 
1.15)

0.99 (0.71, 
1.36)

1.00 (0.72, 
1.38)

0.756

Reduced rank regression
DP 1
  Crude model 
(Model 1) 1.00

1.22 (0.72, 
2.05)

1.56 (1.19, 
2.05) **

2.43 (1.78, 
3.33) **

< 0.001

  Model 2 1.00 1.26 (0.74, 
2.13)

1.68 (1.27, 
2.23) ***

2.61 (1.89, 
3.61) ***

0.001

  Model 3 1.00 1.33 (0.77, 
2.32)

1.34 (1.26, 
2.27) ***

1.69 (1.82, 
3.58) ***

< 0.001

DP 2
  Crude model 
(Model 1) 1.00

0.83 (0.61, 
1.13)

0.99 (0.73, 
1.34)

0.74 (0.54, 
1.00)

  Model 2 1.00 0.81 (0.60, 
1.11)

0.96 (0.70, 
1.32)

0.71 (0.51, 
0.97) *

0.086

  Model 3 1.00 0.83 (0.60, 
1.15)

0.88 (0.63, 
1.22)

0.65 (0.46, 
0.91) *

0.021

DP 3
  Crude model 
(Model 1) 1.00

0.88 (0.65, 
1.19)

0.90 (0.67, 
1.22)

0.75 (0.55, 
1.02)

  Model 2 1.00 0.88 (0.65, 
1.20)

0.90 (0.66, 
1.23)

0.74 (0.54, 
1.01)

0.079

  Model 3 1.00 0.91 (0.66, 
1.25)

0.86 (0.62, 
1.19)

0.73 (0.53, 
1.01)

0.056

§ Trends were examined using the Cochran-Armitage trend test; *P < 0.05, 
**P < 0.01, **P < 0.001

Model 1: Unadjusted model. Model 2: Includes adjustment of age, gender, 
household income, education, occupation, physical exercise, drinking, 
smoking. Model 3: Includes adjustment of age, gender, household income, 
education, occupation, physical exercise, drinking, smoking, family history of 
diabetes, obesity, metabolic syndrome. ORs and 95% confidence interval were 
obtained using multiple Logistic regression. P for trend values for the medians 
of each quartile of scores included in the multiple generalized linear models
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incidence and severity of metabolic syndrome [48, 54]. 
Plant-oriented diets appear to ameliorate IR by improv-
ing lipid profiles and attenuating systemic inflammation 
[55]. Although our study focused on T2DM specifically, 
the observed protective effect of RRR-DP2 points to 
broader metabolic benefits and highlights the need for 
integrated lifestyle interventions that target IR before 
hyperglycemia becomes manifest.

A major strength of this study is our comprehensive 
approach to confounder management. Directed acyclic 
graphs (DAGs) and propensity score matching (PSM) 
facilitated rigorous adjustments, enhancing the valid-
ity of comparisons between diabetic and non-diabetic 
participants. Furthermore, mediation analyses clari-
fied the potential mechanistic role of TyG in connect-
ing these “glucose–lipid metabolism–related” diets to 
T2DM risk. Nevertheless, certain limitations warrant 
acknowledgment. First, the cross-sectional nature of this 
analysis precludes causal inferences. Second, reliance on 
self-reported food frequency questionnaires introduces 
possible recall bias, and our participants from east-
ern China may not represent other dietary and genetic 

backgrounds. Additional large-scale, longitudinal, or 
interventional studies are needed to replicate these find-
ings and substantiate their broader applicability.

Conclusions
In summary, our results indicate that both PCA-DP1 and 
RRR-DP1 are positively associated with insulin resistance 
(HOMA-IR, TyG index) and heightened T2DM risk in 
Han Chinese population, whereas RRR-DP2 demon-
strates a protective association against T2DM. Further-
more, our study provides evidence that the TyG index 
partially mediates the link between the glucose–lipid 
metabolism–related RRR-DP1 and T2DM, underscoring 
the pivotal role of dysregulated lipid–glucose pathways in 
the onset of type 2 diabetes.

Fig. 4  Dose-response association between reduced rank regression (RRR)-derived dietary patterns (RRR-derived DP) and the homeostasis model as-
sessment of insulin resistance (A ~ C) [HOMA-IR, n = 1330. DP 1 (panel A), DP 2 (panel B), DP 3 (panel C)], triglyceride-glucose index (D ~ F) [TyG index, 
n = 1330. DP 1 (panel D), DP 2 (panel E), DP 3 (panel F)], and homeostasis model assessment of β cell function (G ~ I) [HOMA-%β, n = 1330. DP 1 (panel G), 
DP 2 (panel H), DP 3 (panel I)]
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Table 3  Beta coefficients (β) and 95% confidence interval (CI) of HOMA-TyG index associated with each score increase in DP1
β (95% confidence interval)
Quartile 1 (Reference, n = 332) Quartile 2 (n = 331) Quartile 3 (n = 331) Quartile 4 (n = 332) P for Trend §

PCA-derived DP 1
HOMA-%β
Crude model (Model 1) 1.00 -7.19 (-19, 5.0) 2.27 (-9.9, 14) 0.46 (-12, 13) 0.582
Model 2 1.00 -6.04 (-18, 5.9) 2.13 (-10.0, 14) 2.80 (-9.5, 15) 0.760
Model 3 1.00 -4.03 (-16, 7.7) 3.62 (-8.2, 15) 4.49 (-7.5, 16) 0.947
HOMA-IR
Crude model (Model 1) 1.00 0.01 (-0.07, 0.14) 0.67 (0.39, 1.70) 0.83 (0.01, 0.21) 0.066
Model 2 1.00 0.11 (-1.0, 1.2) 0.98 (-0.12, 2.10) 1.19 (0.08, 2.30) * 0.017
Model 3 1.00 0.07 (-1.0, 1.2) 0.91 (-0.18, 2.00) 1.23(0.12, 2.30) * 0.006
TyG index
Crude model (Model 1) 1.00 -0.03 (-0.07, -0.14) 0.11 (0.01, 0.21) * 0.11 (0.01, 0.20) * 0.011
Model 2 1.00 0.04 (-0.06, 0.15) 0.13 (0.03, 0.24) * 0.13 (0.03, 0.24) * 0.005
Model 3 1.00 0.02 (-0.06, 0.09) 0.09 (0.01, 0.17) * 0.13 (0.04, 0.21) ** < 0.001
RRR-derived DP 1
HOMA-%β
Crude model (Model 1) 1.00 -5.33 (-18, 6.9) -6.1 (-17, 4.7) -7.74 (-20, 4.5) 0.222
Model 2 1.00 -1.50 (-30, 10) -3.2 (-14, 7.4) -1.91 (-14, 10) 0.176
Model 3 1.00 -0.62 (-29, 9.6) -2.6 (-13, 7.8) -2.17 (-14, 9.7) 0.154
HOMA-IR
Crude model (Model 1) 1.00 -0.26 (-1.3, 0.81) 0.38 (-0.68, 1.40) 0.97 (-0.10, 2.0) 0.109
Model 2 1.00 -0.01 (-1.0, 1.1) 0.65 (-0.44, 1.70) 1.26 (0.16, 2.4) * 0.006
Model 3 1.00 0.04 (-1.0, 1.1) 0.54 (-0.54, 1.60) 1.08 (0.02, 2.2) * 0.027
TyG index
Crude model (Model 1) 1.00 0.07 (-0.03, 0.17) 0.16 (0.02, 0.20) 0.21 (0.11, 0.31) * < 0.001
Model 2 1.00 0.09 (-0.02, 0.19) 0.17 (0.07, 0.28) * 0.22 (0.12, 0.32) *** < 0.001
Model 3 1.00 0.06 (-0.02, 0.14) 0.11 (0.03, 0.19) * 0.14 (0.06, 0.22) *** 0.002
§: Trends were examined using the Cochran-Armitage trend test; *P < 0.05, **P < 0.01, ***P < 0.001

PCA-derived DP 1, principal component analysis-derived dietary pattern 1. RRR-derived DP 1, reduced rank regression-derived dietary pattern 1. Model 1: Unadjusted 
model. Model 2: Includes adjustment of age, gender, household income, education, occupation, physical exercise, drinking, smoking. Model 3: Includes adjustment 
of age, gender, household income, education, occupation, physical exercise, drinking, smoking, family history of diabetes, obesity, metabolic syndrome. TyG index, 
triglyceride-glucose index; HOMA-IR, homeostasis model assessment of insulin resistance; HOMA-%β, homeostasis model assessment of β-cell function. The β 
and 95% confidence interval were obtained using generalized linear models. P for trend values for the medians of each quartile of scores included in the multiple 
generalized linear regression models
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Fig. 5  The association between DPs on the risk of T2DM (A, B) and TyG index (C, D) by age, gender, and BMI category. OR, odds ratios; CI, confidence 
interval; β, estimated coefficients. ORs or β were adjusted for age, gender, education status, household income, physical exercise, drinking, smoking, fam-
ily of diabetes, obesity, metabolic disorders. DPs, dietary patterns; T2DM, type 2 diabetes mellitus; TyG index, triglyceride-glucose index. BMI, body mass 
index. Normal (18.5 ≤ BMI < 25.0), overweight (25.0 ≤ BMI < 28.0) and obesity ((BMI ≥ 28.0)
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