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Abstract 

Background Acute myocardial infarction (AMI) has a significant impact on global health, especially among individu-
als with diabetes, emphasizing the need for specialized glycemic management. This study examines the glycemic 
comparison index (GCI), a novel prognostic tool designed for patients with AMI and diabetes, aiming to enhance 
glucose management in critical care settings.

Methods This retrospective cohort analysis used data from the Medical Information Mart for Intensive Care IV 
database (version 2.2). The GCI was calculated by comparing mean blood glucose levels in the intensive care unit 
(ICU) to baseline glucose levels. Patients were stratified into tertiles based on their GCI scores. The primary outcome 
measured was one-year all-cause mortality, while secondary outcomes included hospital mortality, ICU-free days, 
and hypoglycemic events. Statistical analyses included time-dependent receiver operating characteristic (ROC), cox 
proportional hazards models, generalized linear models (GLM), and restricted cubic spline analysis.

Results The patient population comprised 622 individuals, with a mean age of 69.9 years and 64.6% male represen-
tation. The high GCI group exhibited the highest one-year mortality rate and fewer ICU-free days, while the low GCI 
group exhibited a higher incidence of hypoglycemia. Statistical analyses revealed that GCI was a significant predictor 
of one-year all-cause mortality (hazard ratio: 2.21, 95% confidence interval: 1.51–3.24). Analysis using time-dependent 
ROC confirmed the consistent predictive accuracy of GCI for survival at 1, 6, and 12 months (area under the curve: 
0.671, 0.670, and 0.634, respectively). Furthermore, GLM analysis indicated that a higher GCI was associated with fewer 
ICU-free days.

Conclusions Higher GCI values are associated with increased one-year mortality and fewer ICU-free days in patients 
with AMI and diabetes. In comparison, lower GCI values are correlated with a higher risk of hypoglycemia. The GCI 
demonstrates potential as a personalized prognostic tool, although further validation is needed.
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Graphical Abstract

Background
Acute myocardial infarction (AMI) remains a major con-
tributor to the global health burden and mortality rates, 
with diabetes recognized as a significant risk factor [1–3]. 
A 2023 meta-analysis by Salari et  al. reported that AMI 
affected 3.8% of individuals younger than 60 years, while 
the incidence increased to 9.5% in those over 60 [4]. Addi-
tionally, a study by Arnold et  al. demonstrated that 38% 
of patients with AMI were diagnosed with diabetes, and 
another 31% exhibited a prediabetic state [5], highlighting 
the strong connection between these two conditions.

Elevated glucose levels in patients with AMI and dia-
betes are associated with harmful outcomes, including 
increased oxidative stress, inflammation, and a higher 
risk of thrombosis, which can worsen cardiac damage 
and delay recovery [6, 7]. Current guidelines recommend 
keeping blood glucose levels between 140 and 180 mg/dL 
(7.8–10.0 mmol/L) in intensive care unit (ICU) settings 
[8, 9]. However, these recommendations are general and 
not specifically designed for patients with AMI, creating 
uncertainty regarding the effectiveness of these universal 
glucose management targets across patients with different 
comorbidities and pre-admission glucose control [10, 11].

Personalized glycemic management, particularly the use 
of baseline glycemic control to establish individualized 
targets, has gained recognition in critically ill patients, 
especially those with diabetes and AMI [12]. Conven-
tional glycemic indicators, such as mean blood glucose 

levels, fail to be considered for individual baseline glyce-
mic control, which may result in under- or overtreatment. 

The Glycemic Comparison Index (GCI) is a novel metric 
that compares mean blood glucose readings in the ICU 
with baseline levels derived from glycated hemoglobin 
(HbA1c) measurements [13]. This study explores whether 
GCI can more effectively stratify risk and guide glycemic 
targets than standard glucose measurements. The primary 
focus is on examining the association between GCI and 
the prognosis of diabetic patients with AMI, providing a 
foundation for future research to evaluate the impact of 
targeted GCI interventions on patient outcomes.

Methods
Design and ethical considerations
This single-center, retrospective analysis utilized a high-
quality, de-identified database of ICU patients to investigate 
the association between GCI and the prognosis of AMI 
patients with diabetes. The Institutional Review Boards at 
both the Massachusetts Institute of Technology and the 
Beth Israel Deaconess Medical Center (BIDMC) approved 
the use of these de-identified data, ensuring compliance 
with ethical standards and patient privacy protections.

GCI calculation
The mean blood glucose measurement in the ICU was 
compared to the baseline glucose levels derived from 
HbA1c to calculate the GCI. The GCI was calculated 
using the following formula:

The denominator facilitated the conversion of HbA1c 
values to average glucose levels in this formula, which 

GCI = 100×mean blood glucose in ICU (mg/dL)/[(28.7H× A1c%)− 46.7]
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is derived from the study by Nathan et  al. [13]. Subse-
quently, this approach has been used to calculate the 
stress hyperglycemia ratio, a metric widely applied in var-
ious research studies [14–16].

Study population
This retrospective cohort analysis used data from 
the Medical Information Mart for Intensive Care IV 
(MIMIC-IV) database (version 2.2). The database con-
tains anonymized health-related data from patients 
admitted to the ICUs at BIDMC between 2008 and 
2019. The MIMIC-IV database is an invaluable resource 
for clinical research due to its comprehensive patient 
records, encompassing demographic details, vital signs, 
laboratory results, and medication data.

The inclusion criteria for the study cohort were as fol-
lows: (1) Patients with a concurrent diagnosis of AMI and 
diabetes mellitus and (2) patients admitted to the ICU for 
the first time. The exclusion criteria were as follows: (1) 
ICU stay of less than 2 days and (2) missing HbA1c levels, 
either during the ICU stay or within the month before 
ICU admission. The attending physician diagnosed 
patients and recorded the information in the medical 
records. The attending physician’s diagnoses were con-
verted into International Classification of Diseases (ICD) 
codes and included in the MIMIC-IV database. The ICD 
codes were employed to identify and select relevant diag-
noses for the cohort. The specific codes are available in 
the Supplementary Material Table S1.

A total of 622 patients met the study’s eligibility crite-
ria. These individuals were subsequently stratified into 
three categories: low, medium, and high, based on the 
tertiles of their GCI scores. Figure 1 illustrates the selec-
tion and stratification process.

Data extraction
Data for this retrospective analysis were meticulously 
extracted using the PostgreSQL database (version 11.1, 
http:// www. postg resql. org/). The extraction process 
focused on collecting demographic information, comor-
bidities, laboratory data from the first 24-h ICU admis-
sion, and dialysis or mechanical ventilation initiation 
within this timeframe. Additionally, all ICU blood glu-
cose results, procedures such as Percutaneous Coronary 
Intervention (PCI) or Coronary Artery Bypass Grafting 
(CABG), severity of illness scores, prognosis, and dura-
tion of ICU stay were collected. For tests other than blood 
glucose, the first recorded result was selected to repre-
sent the initial condition of patients upon ICU admission. 
All blood glucose measurements collected throughout 
the ICU stay, including fingerstick, venous whole blood, 
and plasma samples, were used regardless of timing or 
measurement method. All values were standardized to 

mg/dL. The first recorded HbA1c measurement in the 
ICU was prioritized as it best reflected pre-admission 
glycemic control. If unavailable, the most recent value 
was used within one month before ICU admission.

Primary and secondary outcomes
This study primarily assessed the all-cause mortality rate 
at one year. Secondary outcomes included the hospital 
mortality rate, ICU-free days within the first 28 days fol-
lowing ICU admission, and hypoglycemic events during 
the ICU stay.

Subgroup analysis
The impact of the GCI on one-year all-cause mortality 
was analyzed across various patient subgroups. Cox pro-
portional hazard (CPH) models were used to calculate 
hazard Ratios (HRs), with stratification based on gender, 
age, HbA1c level, CABG operation, use of vasoactive 
medications within the first 24  h, and congestive heart 
failure.

Statistical analysis
Quantitative variables are presented as the median 
and interquartile range (IQR) and compared using the 

Fig. 1 Flowchart of the cohort selection process. *During the ICU 
stay or within the month preceding ICU admission. AMI: Acute 
Myocardial Infarction; GCI: Glycemic Comparison Index

http://www.postgresql.org/
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Kruskal–Wallis rank sum test. Depending upon applica-
bility, categorical variables are expressed as frequencies 
(percentages) and analyzed using Chi-square or Fisher’s 
exact tests. Kaplan–Meier survival analysis estimated the 
incidence of primary outcome events across GCI strati-
fication groups, with differences evaluated using the log-
rank test. The association between GCI and one-year 
mortality was analyzed using four CPH regression mod-
els. The first model applied a univariate CPH approach, 
considering GCI alone, while subsequent models incor-
porated multivariate CPH models. The second model 
adjusted for PCI, CABG, and tumor comorbidities. The 
third model included additional adjusted for Acute Physi-
ology Score III (APSIII) scores and heart failure comor-
bidities. Stepwise regression within the CPH framework 
was performed in the fourth model for variable selection. 
This method iteratively evaluated the inclusion or exclu-
sion of variables based on the Akaike Information Crite-
rion (AIC), optimizing the model for explanatory power 
and simplicity [17]. Across all models, the intermediate 
GCI level served as the reference category. Additionally, 
generalized linear models (GLM) with AIC-guided step-
wise regression assessed ICU-free days within a 28-day 
window. Time-dependent receiver operating characteristic 

(ROC) curve analysis evaluated the predictive accuracy of 
GCI for the primary outcomes, with the area under the 
curve (AUC) values indicating the model performance 
over time. Restricted cubic spline (RCS) analysis explored 
the dose–response relationship between GCI and the risk 
of primary outcomes. Statistical analyses were conducted 
in R software (version 4.3.2) [18], with a two-tailed P-value 
of < 0.05 considered statistically significant. Missing data 
were imputed using the Multiple Imputation by Chained 
Equations package in R software [19].

Sensitivity analysis
As a novel indicator, GCI incorporates an average value 
in its formula’s denominator. A mean value was also 
applied to the numerator to maintain the index’s rational-
ity. The sensitivity analysis compared the GCI calculation 
method using the average blood glucose with the alterna-
tive approach based on the median.

Results
Baseline characteristics
The study cohort included 622 patients with a mean 
age of 69.93  years, with males comprising 64.6% of the 
population. Figure 2 illustrates the distribution of mean 

Fig. 2 Scatter plot of mean glucose levels and HbA1c across GCI tertiles, differentiated by one-year outcomes. This scatter plot illustrates the 
relationship between mean glucose levels and HbA1c across GCI groups. Each circle represents patients, color-coded by GCI group (low, medium, and high), 
with open circles indicating survivors and solid circles representing deceased patients. Black triangles denote the median glucose and HbA1c for each group 
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glucose and HbA1c levels across the low, medium, and 
high GCI groups. The scatter plot visually depicts the 
association between these two variables, using color cod-
ing to differentiate the GCI groups. Table 1 presents the 
baseline characteristics of the cohort stratified by the 
GCI. Some covariates exhibited significant differences 
among the low, medium, and high GCI groups. Higher 
GCI levels were associated with a significant increase in 
age (P < 0.001) and hospital and one-year mortality rates, 
with the highest mortality rates observed in the high GCI 
group (P < 0.001). Hypoglycemic events were inversely 
correlated with GCI and occurred most frequently in the 
low GCI group (P < 0.001). The high GCI group under-
went interventions such as PCI and CABG more often 
(P = 0.003 and P < 0.001, respectively). Furthermore, 
greater GCI was associated with increased illness sever-
ity, as reflected by higher APSIII scores and a higher 
prevalence of congestive heart failure and renal disease 
(both P < 0.001).

Primary outcome
The Kaplan–Meier survival curves indicated consider-
ably lower one-year survival probability in the high GCI 
group compared to the intermediate and low GCI groups 
(Fig.  3). The log-rank test confirmed the statistical sig-
nificance of this difference (P < 0.001). Subsequent analy-
sis using four CPH models verified the Kaplan–Meier 
findings, demonstrating a significantly elevated risk of 
one-year all-cause mortality in the high GCI group com-
pared to the medium GCI group (Model 1 HRs: 2.21, 
95% confidence interval [CI]: 1.51–3.24, P < 0.001; Model 
4 HRs: 1.57, 95% CI: 1.05–2.34, P = 0.028). These results 
remained significant even after adjusting for multiple 
confounding factors. No significant differences in the 
one-year mortality risk were observed between the low 
and medium GCI groups across all models. Detailed 
results from these models are provided in Supplementary 
Material Table S2.

The RCS model demonstrated an L-shaped relationship 
between the GCI as a continuous variable and the one-
year all-cause mortality rate, with an inflection point at a 
GCI of 98.54. Figure 4 depicts this relationship. Segmen-
tal regression analysis was conducted on both sides of 
this inflection point to further elucidate the association. 
The HR per unit GCI was 1.008 (95% CI: 0.988–1.027; 
P = 0.451) for GCI values below 98.54 and 1.003 (95% 
CI: 1.001–1.015; P < 0.001) for GCI values equal or above 
98.54.

The time-dependent ROC curve confirmed GCI as a 
strong prognostic marker for survival outcomes at 1, 6, 
and 12 months (Fig. 5). This time-dependent ROC anal-
ysis provides a distinct advantage over conventional 
ROC approaches by enabling the evaluation of GCI’s 

predictive capabilities at various temporal milestones 
while considering the evolving risk profile over time. 
The AUC values demonstrated GCI’s consistent predic-
tive accuracy, decreasing slightly from 0.671 at 1 month 
to 0.634 at 12  months, indicating that GCI remains a 
relevant prognostic indicator throughout the year.

Secondary outcome
A stepwise regression analysis using AIC revealed that 
GCI did not have a significant impact on in-hospital 
mortality rates [odds ratio (OR) for low GCI: 0.81, 95% 
CI: 0.33–1.95, P = 0.65; OR for high GCI: 1.68, 95% 
CI: 0.82–3.60, P = 0.17]. In contrast, GCI emerged as 
a significant predictor of hypoglycemia in the ICU. A 
notable association was observed between low GCI 
and an increased risk of hypoglycemia (OR: 1.86, 95% 
CI: 1.22–2.86; P = 0.004), while a high GCI was signifi-
cantly associated with reduced incidence of hypoglyce-
mia (OR: 0.38; 95% CI: 0.24–0.61; P < 0.001). Moreover, 
a GLM regression indicated a significant reduction in 
ICU-free days in the high GCI group compared to the 
intermediate group (estimate: –2.07; 95% CI: –2.01 to 
–0.94; P = 0.007), while statistically non-significant dif-
ference was observed in the low GCI group (estimate: 
˗0.53; 95% CI: –3.57 to 0.56; P = 0.48). Detailed results 
are provided in the Supplementary Material Table S3.

Subgroup analysis
Subgroup analysis revealed a significant increase in the 
one-year all-cause mortality risk within the high GCI 
group across various patient subgroups. This associa-
tion was particularly pronounced among male patients, 
individuals over 70  years of age, patients who had not 
undergone CABG, those who did not receive vasoac-
tive medications within the first 24  h of ICU admis-
sion, and patients without a diagnosis of congestive 
heart failure. No significant interactions were observed. 
Detailed outcomes, including HRs and P-values for 
each subgroup, are provided in Supplementary Mate-
rial Table S4.

Sensitivity analysis
The median ICU blood glucose value was employed in 
the sensitivity analysis to calculate the median-based GCI 
(mGCI), which was stratified into tertiles. Kaplan–Meier 
survival curves for these groups, depicted in Supplemen-
tary Material Figure S1, align with the primary analysis 
and revealed a significantly lower one-year survival rate 
in the high mGCI group. The log-rank test confirmed this 
finding with a P-value of < 0.001.
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Table 1 Comparison of patient characteristics by GCI stratification groups

Characteristics Low GCI
N =  208a

Medium GCI
N =  207a

High GCI
N =  207a

Missing(%) P-value2

Range  ≤ 88.82 88.82–108.79  > 108.79

Demographics

 Male 133 (64%) 137 (66%) 132 (64%) 0 0.8

 Age (years) 67.97 (61.00, 76.08) 70.56 (61.63, 78.69) 73.99 (66.27, 80.00) 0  < 0.001

Race 0 0.2

 Asian 6 (2.9%) 2 (1.0%) 4 (1.9%)

 Black/African American 14 (6.7%) 12 (5.8%) 16 (7.7%)

 Hispanic or Latino 13 (6.3%) 6 (2.9%) 7 (3.4%)

 White 122 (59%) 147 (71%) 124 (60%)

 Other 53 (25%) 40 (19%) 56 (27%)

Prognosis

 Length of ICU stay (days) 3.77 (2.73, 5.65) 3.46 (2.45, 5.19) 4.05 (2.81, 6.94) 0 0.071

 Length of hospital stay (days) 10.85 (7.98, 15.68) 10.21 (7.14, 14.57) 11.05 (6.29, 16.01) 0 0.6

 Hospital mortality 12 (5.8%) 15 (7.2%) 36 (17%) 0  < 0.001

 one-year mortality 38 (18%) 40 (19%) 76 (37%) 0  < 0.001

 Hypoglycemia 91 (44%) 60 (29%) 32 (15%) 0  < 0.001

Interventions

 PCI 21 (10%) 25 (12%) 44 (21%) 0 0.003

 CABG 148 (71%) 122 (59%) 68 (33%) 0  < 0.001

 Dialysis within the first 24 h of ICU 
admission

2 (1.0%) 8 (3.9%) 16 (7.7%) 0 0.003

 Mechanical ventilation within the first 
24 h of ICU admission

127 (61%) 100 (48%) 96 (46%) 0 0.005

 Usage of vasoactive drugs 
within the first 24 h of ICU admission

124 (60%) 115 (56%) 103 (50%) 0 0.13

GCI-related

 Mean blood glucose in ICU stay 
(mmol/L)

8.01 (7.29, 9.35) 8.37 (7.51, 9.41) 10.13 (8.56, 12.06) 0  < 0.001

 Median blood glucose in ICU stay 
(mmol/L)

7.61 (6.78, 8.76) 8.00 (7.11, 9.06) 9.53 (8.16, 11.32) 0  < 0.001

 HbA1c (%) 8.70 (7.60, 10.50) 6.90 (6.35, 7.70) 6.40 (5.85, 7.20) 0  < 0.001

 GCI 76.27 (64.04, 82.77) 99.87 (94.28, 104.68) 125.62 (116.07, 143.08) 0  < 0.001

Comorbidities

 Congestive heart failure 113 (54%) 113 (55%) 151 (73%) 0  < 0.001

 Cerebrovascular disease 50 (24%) 41 (20%) 49 (24%) 0 0.5

 Chronic pulmonary disease 44 (21%) 52 (25%) 57 (28%) 0 0.3

 Renal disease 65 (31%) 82 (40%) 95 (46%) 0 0.009

 Cancer 10 (4.8%) 13 (6.3%) 12 (5.8%) 0 0.8

Illness severity

 APSIII 41.50 (34.00, 53.00) 42.00 (34.00, 55.00) 49.00 (38.00, 62.00) 0  < 0.001

 Urine output within the first 24 h 
of ICU admission (mL)

1,525.00 (1,077.25, 1,986.25) 1,575.00 (992.50, 2,323.75) 1,310.00 (782.50, 2,110.00) 11(1.77) 0.13

Laboratory results

 PT (s) 14.15 (13.05, 15.55) 14.13 (13.01, 15.30) 13.65 (12.50, 15.25) 16 (2.27) 0.085

 APTT (s) 36.13 (29.19, 49.90) 38.70 (30.28, 62.18) 40.23 (29.91, 62.34) 15 (2.41) 0.049

 RDW (%) 14.00 (13.20, 14.95) 14.15 (13.33, 15.23) 14.40 (13.50, 15.70) 1 (0.16) 0.021

 Hematocrit (%) 30.63 (27.94, 34.50) 30.70 (27.98, 36.13) 30.70 (27.80, 36.03) 0  > 0.9

 Hemoglobin (g/dL) 10.23 (9.35, 11.45) 10.05 (9.25, 11.80) 10.15 (9.00, 11.93) 0 0.8

 Platelets (×  109/L) 184.50 (144.38, 236.38) 190.00 (145.50, 265.25) 203.00 (157.50, 274.75) 0 0.050

 WBC (×  109/L) 12.75 (9.94, 15.70) 12.25 (10.03, 15.58) 12.65 (10.40, 15.73) 0 0.6
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Discussion
This study is the first to investigate the association 
between GCI and prognosis in a specific cohort of 
patients with AMI and concurrent diabetes mellitus. The 
findings indicate that patients in the high GCI group have 
a higher one-year mortality rate and fewer ICU-free days 
within 28 days compared to those in the medium or low 
GCI, with no significant difference in hospital mortality 

rates. Furthermore, a lower GCI is associated with a 
higher incidence of hypoglycemia, highlighting the com-
plex balance required in glycemic management within 
this patient population.

The prognosis for patients with AMI and diabetes is 
significantly influenced by the duration and progression 
of their diabetes and their past glycemic control [20, 21]. 
One potential explanation is the ’vascular hyperglycemia 

Table 1 (continued)

Characteristics Low GCI
N =  208a

Medium GCI
N =  207a

High GCI
N =  207a

Missing(%) P-value2

 Anion Gap (mmol/L) 13.50 (11.38, 16.00) 14.50 (12.00, 16.50) 15.50 (13.00, 18.50) 0  < 0.001

 Bicarbonate (mmol/L) 23.00 (21.50, 24.50) 23.00 (20.75, 25.00) 22.50 (20.00, 25.00) 0 0.8

 BUN (mg/dL) 19.50 (14.50, 30.13) 24.00 (16.50, 35.25) 28.00 (19.50, 50.75) 0  < 0.001

 Creatinine (mmol/L) 1.05 (0.85, 1.40) 1.15 (0.85, 1.75) 1.45 (1.00, 2.53) 0  < 0.001

 Potassium (mmol/L) 4.40 (4.10, 4.75) 4.35 (4.03, 4.70) 4.35 (3.95, 4.70) 1 (0.16) 0.5

 Sodium (mmol/L) 137.50 (136.00, 140.00) 138.00 (136.00, 139.50) 137.50 (134.50, 140.00) 0 0.7

APSIII Acute Physiology Score III, APTT Activated Partial Thromboplastin Time, BUN Blood Urea Nitrogen, CABG Coronary Artery Bypass Graft, GCI Glycemic Comparison 
Index, PCI Percutaneous Coronary Intervention, PT Prothrombin Time, RDW Red Distribution Width, WBC White blood cell
a n (%): Median (IQR)
2 Pearson’s Chi-squared test; Kruskal–Wallis rank sum test; Fisher’s Exact Test for Count Data (with simulated P-value based on 2000 replicates)

Fig. 3 Kaplan–Meier survival curves for one-year all-cause mortality analysis. Kaplan–Meier survival curves for one-year all-cause mortality stratified by 
GCI groups (low, medium, and high), with a table below displaying the number of patients at risk at each time point (in days) 
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memory’ hypothesis [22, 23], which suggests that pro-
longed exposure to high glucose levels can create a last-
ing inflammatory state in the vascular system that cannot 
be reversed by subsequent glycemic control. This study’s 
findings may support this hypothesis, as higher val-
ues could reflect inadequate glycemic management and 
increased vascular susceptibility, even if glycemic control 
is normalized during the acute phase. Supporting evi-
dence from multiple studies demonstrates that long-term 
hyperglycemia can lead to persistent vascular inflamma-
tion and endothelial dysfunction due to epigenetic modi-
fications, regardless of later glucose normalization [24, 
25]. Hyperglycemia, hypoglycemia, and glycemic vari-
ability play significant roles in determining outcomes for 
patients with AMI [26–29]. Hyperglycemia can intensify 
oxidative stress and inflammatory responses, hindering 
cardiac repair and leading to endothelial dysfunction [30, 
31]. Conversely, hypoglycemia is associated with height-
ened platelet activity and coagulation anomalies, which 
introduce additional risks [32, 33]. These findings high-
light the importance of precise glycemic monitoring and 

management in patients with AMI, emphasizing the deli-
cate balance needed to improve patient outcomes.

This study’s findings indicate a worse prognosis for 
patients with AMI and diabetes in the high GCI group. 
Elevated GCI, which reflects high mean glucose levels 
during the ICU stay or low HbA1c levels, suggests two 
distinct patient profiles. Each profile may have differ-
ent underlying mechanisms that could influence their 
prognosis.

1. Elevated ICU Blood Glucose (Large Numerator): 
High mean glucose levels in this subset of patients may 
reflect the severity and persistence of stress-induced 
hyperglycemia, which indicates an intensified or pro-
longed stress response [34, 35]. Sustained hyperglycemia 
may intensify oxidative stress [36], promote pro-inflam-
matory pathways [37, 38], increase thrombotic risk [39], 
compromise coronary perfusion during PCI procedures 
[40], and prolonged metabolic stress, which could impede 
myocardial recuperation [41] and increase susceptibility 
to infections [42], thereby exacerbating the prognosis for 
patients with AMI and diabetes [43, 44].

Fig. 4 RCS regression analysis of GCI and one-year all-cause mortality



Page 9 of 11She et al. BMC Endocrine Disorders           (2025) 25:85  

2. Low Baseline Glycemic Control (Small Denomina-
tor): Patients who experience elevated hyperglycemia 
during ICU stays, despite having good baseline glyce-
mic management, may be undergoing a strong stress 
response, which indicates an adverse prognosis [45, 
46]. These acute hyperglycemic episodes could indicate 
the onset of acute insulin resistance, impaired myocar-
dial reperfusion, and reduced coronary microcircula-
tion function, all of which could adversely impact their 
prognosis [47, 48]. Moreover, the threshold for harmful 
glucose levels may vary based on baseline glycemic con-
ditions, where patients with optimal baseline control 
might experience adverse outcomes at lower glucose 
thresholds. Eitel et  al.’s research demonstrates that the 
glucose threshold for myocardial injury risk differs based 
on the patient’s diabetic status, with non-diabetic AMI 
individuals exhibiting significantly lower thresholds than 
those with diabetes [49].

The study examines the association between GCI and 
prognosis in patients with AMI and diabetes, but it has 
some limitations. First, the retrospective design limits 
the ability to make causal inferences. Second, using a 
single-center database may limit the generalizability of 
the findings. Third, using predetermined thresholds GCI 

requires validation in different clinical settings, and the 
optimal threshold has not been determined. Fourth, the 
potential influence of unmeasured confounding factors, 
such as cardiac function classification and other clinical 
variables, requires careful interpretation of the results. 
These limitations highlight the need for further prospec-
tive, multicenter studies to confirm and expand the clini-
cal utility of GCI.

Conclusion
This study demonstrates that in ICU patients with AMI 
and diabetes, a high GCI correlates with higher one-
year all-cause mortality and fewer ICU-free days within 
28 days. Conversely, a low GCI is linked to an increased 
risk of hypoglycemia.
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