Skip to main content

Table 5 Differences in responder vs non-responder subjects (binary variables)

From: Predicting responsiveness to GLP-1 pathway drugs using real-world data

Features

 

Number of responders (% of total)

False Discovery Rate (FDR)

Sex

Female

1674(42.8%)

9.70E-02

Male

1773(44.9%)

Hispanic ethnicity

No

3349(43.8%)

9.42E-01

Yes

98(44.3%)

Race

Africa American

648(46.8%)

3.41E-02

Non-Africa American

2799(43.3%)

White

2688(43.4%)

1.60E-01

Non-White

759(45.6%)

Asian

46(30.8%)

4.02E-03

Non-Asian

3401(44.1%)

Other

74(50.3%)

1.88E-01

Non-Other

3373(43.7%)

Chronic kidney disease

Yes

425(39.7%)

8.05E-03

No

3022(44.5%)

Cardiomyopathy

Yes

137(40.1%)

2.35E-01

No

3310(44.0%)

Heart failure

Yes

251(38.3%)

7.58E-03

No

3196(44.3%)

Hypertension

Yes

2494(44.8%)

1.99E-02

No

953(41.6%)

Arthritis

Yes

609(42.1%)

1.91E-01

No

2838(44.3%)

Gastric bypass

Yes

69(46.6%)

5.83E-01

No

3378(43.8%)

Bowel resection

Yes

33(40.2%)

6.01E-01

No

3414(43.9%)

Retinopathy

Yes

137(41.1%)

3.71E-01

No

3310(44.0%)

insulin

Yes

1017(50.1%)

6.04E-10

No

2430(41.7%)

Metformin

Yes

2130(44.5%)

2.80E-02

No

1317(42.2%)

Sulfonylureas

Yes

1359(44.7%)

3.29E-01

No

2088(43.36%)

Thiazolidinediones

Yes

289(37.3%)

3.81E-04

No

3158(44.6%)

  1. Comparison of features of GLP-1M responders versus non-responders. Significant values are shown in bold in the right hand column