Skip to main content

Table 4 Predictive models for predicting mortality among T2DM in-patients seeking health care at the Ho Teaching Hospital

From: Predictive models and determinants of mortality among T2DM patients in a tertiary hospital in Ghana, how do machine learning techniques perform?

Variables

Model 1

Model 2

Model 3

aOR(95%CI)

p-value

aOR(95%CI)

p-value

aOR(95%CI)

p-value

Family history

      

Diabetes

1.17(0.37–3.73)

0.779

1.23(0.38–3.99)

0.728

1.02(0.29–3.56)

0.977

Cardiovascular diseases

0.84(0.28–2.55)

0.761

0.83(0.27–2.51)

0.741

0.90(0.26–3.05)

0.909

Asthma

2.13(0.17–26.84)

0.559

2.38(0.20–28.60)

0.493

3.13(0.22–44.83)

0.436

Lifestyle History

      

Current Alcoholic

  

0.60(0.18–1.99)

0.407

0.74(0.21–2.62)

0.612

Current Smoker

  

2.67(0.58–12.25)

0.207

1.87(0.37–9.50)

0.448

Complications

      

Cardiovascular diseases

    

0.79(0.27–2.28)

0.665

Nephropathy

    

3.83(1.53–9.61)

0.004

Neuropathy

    

8.51(0.39-187.28)

0.175

Foot Ulcer

    

0.51(0.05–4.75)

0.553

Diabetic Ketoacidosis

    

0.64(0.19–2.17)

0.472

Hyperosmolarity coma

    

1.38(0.14–14.11)

0.784

Hyperosmolarity without coma

   

1.64(0.26–10.25)

0.600

Pneumonia

    

1.41(0.11–17.38)

0.788

  1. aOR = Adjusted Odds ratio controlling for sociodemographic variables. P-value significant at < 0.05