Skip to main content

Table 6 Performance of decision tree, kNN, logistic regression, SVM and XGBoost in predicting mortality outcome among T2DM in-patients

From: Predictive models and determinants of mortality among T2DM patients in a tertiary hospital in Ghana, how do machine learning techniques perform?

Classifier

 

Train

Test

Decision Tree

  

Accuracy

 

1.00

1.00

Precision

Alive

1.00

1.00

Dead

1.00

0.94

Recall

Alive

1.00

0.99

Dead

1.00

1.00

F1 score

Alive

1.00

1.00

Dead

1

0.97

kNN

   

Accuracy

 

0.90

0.90

Precision

Alive

0.99

1.00

Dead

0.20

0.06

Recall

Alive

0.90

0.90

Dead

0.80

1.00

F1 score

Alive

0.94

0.95

Dead

0.32

0.11

Logistic Regression

  

Accuracy

 

0.90

0.90

Precision

Alive

1.00

1.00

Dead

0.15

0.00

Recall

Alive

0.89

0.90

Dead

1.00

0.00

F1 score

Alive

0.94

0.95

Dead

0.26

0.00

SVM

   

Accuracy

 

0.88

0.90

Precision

Alive

1.00

1.00

Dead

0.00

0.00

Recall

Alive

0.88

0.90

Dead

0.00

0.00

F1 score

Alive

0.94

0.95

Dead

0.00

0.00

XGBoost

   

Accuracy

 

0.90

0.88

Precision

Alive

0.90

0.88

Dead

0.00

0.00

Recall

Alive

1.00

1.00

Dead

0.00

0.00

F1 score

Alive

0.95

0.94

Dead

0.00

0.00

  1. kNN: K nearest Neighbor, SVM: Support Vector Machine, XGBoost: eXtreme Gradient Boosting