Skip to main content

Table 3 Performance of different machine learning models for prediction of hyperglycemic crisis outcome

From: Development and validation of inpatient mortality prediction models for patients with hyperglycemic crisis using machine learning approaches

Criteria

LR

SVM

RF

RPART

XGBoost

MARS

NNET

AdaBoost

AUC

0.909

0.968

0.968

0.970

0.929

0.861

0.925

0.945

CI 95%(AUC)

0.832–0.972

0.945–0.986

0.947–0.987

0.935–0.987

0.879–0.969

0.755–0.965

0.877–0.960

0.904–0.973

ACC

0.958

0.970

0.970

0.952

0.970

0.964

0.952

0.976

CI 95%(ACC)

0.931–0.977

0.946–0.986

0.946–0.986

0.923–0.972

0.946–0.986

0.938–0.981

0.923–0.972

0.953–0.990

Kappa

0.610

0.746

0.746

0.626

0.767

0.681

0.611

0.797

Sensitivity

0.545

0.727

0.727

0.682

0.818

0.636

0.636

0.773

Specificity

0.987

0.987

0.987

0.971

0.981

0.987

0.974

0.990

PPV

0.750

0.800

0.800

0.625

0.750

0.778

0.636

0.850

NPV

0.968

0.981

0.981

0.977

0.987

0.975

0.974

0.984

F1

0.632

0.762

0.762

0.652

0.783

0.700

0.636

0.810

  1. AUC: Area under curve; ACC: Accuracy; CI: Confidence interval; PPV: Positive predictive values; NPV: Negative predictive values