Author | Year | Country | Study design | Number of PCOS patients | PCOS diagnostic criteria | Age Mean ± SD | BMI Mean ± SD | SCH (+/-) | Normal TSH upper limit (mIU/ml) | Risk of bias | |
---|---|---|---|---|---|---|---|---|---|---|---|
Anebaracy [34] | 2024 | India | Cross-sectional | 40 | Rotterdam | 23.47 ± 6.87 | 23.21 ± 3.07 | 6/34 | NR | High | |
Bedaiwy [35] | 2018 | USA | Cross-sectional | 137 | Rotterdam | 28.72 | 31.46 | 30/107 | 2.5 | Moderate | |
Benetti-Pinto [36] | 2013 | Brazil | Cross-sectional | 168 | Rotterdam | 24.19 ± 5.78 | 33.45 ± 8.23 | 19/149 | 4.5 | Moderate | |
Cakir [37] | 2022 | Turkey | Cross-sectional | 96 | Rotterdam | 24.08 ± 5.98 | NR | 33/63 | 2.5 | High | |
Dittrich [13] | 2009 | Germany | Cross-sectional | 103 | Rotterdam or NIH | 28.45 ± 6.67 | 28.78 ± 7.69 | 33/70 | 2.5 | Moderate | |
Enzevaei [38] | 2014 | Iran | Cross-sectional | 75 | Rotterdam | 26 ± 4.2 | 25.49 ± 4.27 | 19/56 | 3.75 | Moderate | |
Fatima [39] | 2020 | Pakistan | Cross-sectional | 90 | Rotterdam | 23.81 ± 4.59 | 28.04 ± 4.72 | 31/59 | 2.5 | Moderate | |
Ganie [40] | 2011 | India | Case-control | 353 | NIH | 23.5 ± 4.92 | 25.3 ± 4.2 | 62/291 | 5 | Low | |
Ganvir [41] | 2017 | India | Cross-sectional | 60 | Rotterdam | 19 ± 4.84 | 26.42 ± 4.59 | 16/44 | NR | High | |
Garelli [42] | 2013 | Italy | Case-control | 113 | Rotterdam | 24 ± 6.3 | 23.5 ± 7.35 | 13/100 | NR | High | |
Huang [43] | 2014 | China | Cross-sectional | 428 | Rotterdam | 27.21 ± 6.37 | 26.03 ± 5.67 | 60/368 | 5 | Moderate | |
Kamrul-Hasan [44] | 2020 | Bangladesh | Cross-sectional | 465 | Rotterdam | 22.52 ± 5.38 | 26.63 ± 5.12 | 50/415 | 5 | Moderate | |
Lu [23] | 2016 | China | Cross-sectional | 196 | Rotterdam | 25.56 ± 3.5 | 25.05 ± 4.76 | 92/104 | 2.5 | Low | |
Mehra [45] | 2023 | India | Cross-sectional | 68 | Rotterdam | 24 ± 3.25 | 23.4 ± 2.84 | 16/52 | 4.25 | Moderate | |
Morgante [46] | 2013 | Italy | Case-control | 151 | Rotterdam | 32.2 ± 6.5 | 24.9 ± 5.9 | 51/100 | 2.5 | Moderate | |
Nanda [47] | 2014 | India | Cross-sectional | 196 | NR | 27.28 ± 10.56 | NR | 15/181 | 4.25 | High | |
Nayak [48] | 2020 | India | Cross-sectional | 287 | Rotterdam | 22.45 ± 5.51 | 24.91 ± 5.7 | 58/229 | 4.2 | Low | |
Naz [49] | 2022 | Pakistan | Cross-sectional | 77 | Rotterdam | 29 ± 9.2 | NR | 9/68 | 5.5 | High | |
Novais [50] | 2015 | Brazil | Cross-sectional | 65 | Rotterdam | 27.8 ± 6.9 | 34.8 ± 8.9 | 11/54 | 4.5 | Moderate | |
Pan [51] | 2023 | China | Cross-sectional | 1059 | Rotterdam | 28 (median) (26–30) IQR | NR | 211/848 | 2.5 | Moderate | |
Raj [24] | 2021 | Pakistan | Case-control | 200 | NR | 23.23 ± 3.13 | 25.12 ± 2.51 | 87/113 | 5 | High | |
Rojhani [52] | 2023 | Iran | Cross-sectional | 207 | Rotterdam | 30.7 ± 7.5 | 26.6 ± 5.5 | 24/183 | 5.06 | Low | |
Saeed [53] | 2023 | Saudi arabia | Cross-sectional | 200 | Rotterdam | 33.5 ± 10.13 | 33.57 ± 9.56 | 30/170 | 4.94 | Low | |
Sinha [54] | 2013 | India | Case-control | 80 | Rotterdam | 22.7 ± 5.3 | 24.68 ± 3.07 | 18/62 | NR | High | |
Tagliaferri [55] | 2016 | Italy | Case-control | 154 | Rotterdam | (18–36) range | (16.6–52) range | 22/132 | 2.8 | Moderate | |
Trakakis [21] | 2017 | Greece | Case-control | 280 | Rotterdam | 24 (median) (12–44) range | 24 (median) (16–50) range | 21/259 | 4 | Moderate | |
Vardhan [22] | 2023 | India | Cross-sectional | 100 | Rotterdam | 25.62 ± 4.08 | NR | 4/96 | NR | High | |
Yasar [56] | 2016 | Turkey | Case-control | 217 | Rotterdam | 24.92 ± 6.03 | 28.45 ± 7.01 | 45/172 | NR | High | |
Yu [57] | 2016 | China | Case-control | 100 | Rotterdam | 27.4 ± 5.4 | 31.2 ± 8.3 | 27/73 | 4.25 | Moderate |