Skip to main content

Table 1 Basic characteristics of the studies and quality of the data

From: Sarcopenia in type 2 Diabetes mellitus among Asian populations: prevalence and risk factors based on AWGS- 2019: a systematic review and meta-analysis

First Author

Publication Year

Country

Study Design

Study Setting

Mean_age

Total Sample Size

Male

Female

Measurements

Sarcopenia (%)

JBI score

Shuangling Xiu

2021

China

cross-sectional

Hospital-based

68

582

291

291

DXA

9

8

Fuyuko Takahashi

2021

Japan

cross-sectional

Hospital-based

69.4

369

206

163

BIA

7.9

7

Fuyuko Takahashi

2021

Japan

Prospective cohort study

Hospital-based

71.3

396

232

164

BIA

14.6

7

Ken Sugimoto

2021

Japan

cross-sectional

Hospital-based

70

588

346

242

BIA

6.3

6

Vata- V. Sundar

2021

Malaysia

Prospective observational study

Hospital-based

60

50

37

13

BIA

64

8

Xiaofan Zhang

2021

China

cross-sectional

Hospital-based

61

182

182

0

DXA

45.6

8

Fuyuko Takahashi

2021

Japan

cross-sectional

Hospital-based

67.1

526

301

225

BIA

12.7

8

Hiroyasu Mori

2021

Japan

cross-sectional

Hospital-based

65.4

645

390

255

BIA

11.8

8

Kentaro Mikura

2022

Japan

cross-sectional

Hospital-based

67

261

153

108

BIA

19.9

7

Yoshitaka Hashimoto

2022

Japan

cross-sectional

Hospital-based

71.6

239

140

99

BIA

15.9

8

Yoshihisa Hiromine

2022

Japan

cross-sectional

Hospital-based

69.9

755

453

302

BIA

8.1

8

Kewei Wang

2022

China

cross-sectional

Hospital-based

59.7

312

172

140

DXA

26.9

8

Sayani Das

2023

India

cross-sectional

community-based

68.5

4126

-

-

DXA

22.6

8

Ming-Jun Chen

2023

China

cross-sectional

Hospital-based

69.74

288

108

180

BIA

27.43

7

G.-C. Ma

2023

China

cross-sectional

Hospital-based

65

280

111

169

DXA

15.36

8

Fuyuko Takahashi

2023

Japan

cross-sectional

Hospital-based

69.1

266

162

104

BIA

18

8

Mijin Kim

2023

Korea

cross-sectional

community-based

71

581

261

320

BIA

33.9

8

Lanyu Lu

2023

China

cross-sectional

Hospital-based

70

223

100

123

DXA

36.3

8

Lei Fu

2023

China

cross-sectional

Hospital-based

61.8

220

164

56

DXA

50

7

Lanyu Lu

2023

China

cross-sectional

Hospital-based

64.45

385

167

218

DXA

32.2

8

Yu-Ting Hsu

2023

Taiwan

cross-sectional

Hospital-based

67.3

110

46

64

BIA

37.3

8

Surapaneni Lakshmi Sravya

2023

India

cross-sectional

Hospital-based

57.4

159

80

79

DXA

22

6

Hsin-Yen Yen

2023

Taiwan

cross-sectional

Hospital-based

73.9

577

245

332

BIA

8.3

8

Yinghe Lin

2023

China

cross-sectional

community-based

66

752

368

384

DXA

19.4

6

Wen Wei

2023

China

cross-sectional

Hospital-based

57.8

153

91

62

DXA

24.2

8

Li- Sun

2023

China

cross-sectional

Hospital-based

67.8

543

269

274

DXA

8.84

8

Ke Xu

2024

China

cross-sectional

Hospital-based

60

678

447

231

DXA

17.4

7

Chun-hui Ji

2024

China

cross-sectional

community-based

75

408

201

207

BIA

20.6

6

Yogesh M

2024

India

cross-sectional

Hospital-based

55

404

220

184

BIA

45.3

6

Mingrui Zou

2024

China

cross-sectional

community-based

67

783

412

371

BIA

9.2

8

Sohye Kim

2024

Korea

cross-sectional

community-based

75

1586

721

865

BIA

37.1

8

Yang Sun

2024

China

cross-sectional

Hospital-based

70.1

253

83

170

DXA

39.5

8

Li Quan

2024

China

cross-sectional

Hospital-based

63.86

282

166

116

BIA

21.6

7

Yogesh M

2024

India

cross-sectional

community-based

65.2

250

151

99

BIA

60.4

6

Satoshi Ida

2024

Japan

cross-sectional

Hospital-based

75

510

310

200

BIA

16.4

8

Motoya Sato

2024

Japan

cross-sectional

Hospital-based

80

112

-

-

BIA

48

8

Bingmei Hou

2024

China

cross-sectional

Hospital-based

69.6

676

261

415

DXA

14.1

6

Rimesh Pal

2024

India

cross-sectional

Hospital-based

64.2

129

0

129

DXA

27

8

Shiyue Zou

2024

China

cross-sectional

Hospital-based

70

263

-

-

BIA

42.2

8